Chapter 4

Combinational Logic

4.1

INTRODUCTION

Logic circuits for digital systems may be combinational or sequential. A combinational circuit
consists of logic gates whose outputs at any time are determined from only the present combi-
nation of inputs. A combinational circuit performs an operation that can be specified logically
by a set of Boolean functions. In contrast, sequential circuits employ storage elements in addi-
tion to logic gates. Their outputs are a function of the inputs and the state of the storage elements.
Because the state of the storage elements is a function of previous inputs, the outputs of a se-
quential circuit depend not only on present values of inputs, but also on past inputs, and the cir-
cuit behavior must be specified by a time sequence of inputs and internal states, Sequential
circuits are the building blocks of digital systems and are discussed in Chapters 5, 8, and 9.

4,2 COMBINATIONAL CIRCUITS

122

A combinational circuit consists of input variables, logic gates, and output variables. Combina-
tional logic gates react to the values of the signals at their inputs and produce the value of the out-
put signal, transforming binary information from the given input data to a required output data.
A block diagram of a combinational circuit is shown in Fig. 4.1. The n input binary variables
come from an external source; the m output variables are produced by the internal combinational
logic circuit and go to an external destination. Each input and output variable exists physically
as an analog signal whose values are interpreted to be a binary signal that represents logic 1 and
logic 0. (Note: Logic simulators show only 0's and 1's, not the actual analog signals.) In many
applications, the source and destination are storage registers. If the registers are included with the
combinational gates, then the total circuit must be considered to be a sequential circuit.

Section 4.3 Analysis Procedure 123

: > Combinational =
nmnputs 15 repry £ L
P = crcut 'S .

FIGURE 4.1
Block diagram of combinational circuit

For n input variables, there are 2" possible binary input combinations. For each possible input
combination, there is one possible output value. Thus, a combinational circuit can be specified
with a truth table that lists the output values for each combination of input variables. A com-
binational circuit also can be described by m Boolean functions, one for each output variable.
Each output function is expressed in terms of the n input variables.

In Chapter 1, we learned about binary numbers and binary codes that represent discrete
quantities of information. The binary variables are represented physically by electric voltages
or some other type of signal. The signals can be manipulated in digital logic gates to perform
required functions. In Chapter 2, we introduced Boolean algebra as a way to express logic
functions algebraically. In Chapter 3, we learned how to simplify Boolean functions to achieve
economical (simpler) gate implementations, The purpose of the current chapter is to use the
knowledge acquired in previous chapters to formulate systematic analysis and design proce-
dures for combinational circuits. The solution of some typical examples will provide a useful
catalog of elementary functions that are important for the understanding of digital systems,
We'll address three tasks: (1) Analyze the behavior of a given logic circuit, (2) synthesize a ¢ir-
cuit that will have a given behavior, and (3) write HDL models for some common circuits.

There are several combinational circuits that are employed extensively in the design of dig-
ital systems, These circuits are available in integrated circuits and are classified as standard com-
ponents. They perform specific digital functions commonly needed in the design of digital
systems. In this chapter. we introduce the most important standard combinational circuits, such
as adders, subtractors, comparators, decoders. encoders, and multiplexers. These components are
available in integrated circuits as medium-scale integration (MSI) circuits. They are also used
as standard cells in complex very large-scale integrated (VLSI) circuits such as application-
specific integrated circuits (ASICs). The standard cell functions are interconnected within the
VLSI circuit in the same way that they are used in multiple-1C MSI design.

4.3 ANALYSIS PROCEDURE

The analysis of a combinational circuit requires that we determine the function that the circuit
implements. This task starts with a given logic diagram and culminates with a set of Boolean
functions. a truth table, or. possibly, an explanation of the circuit operation. If the logic diagram
to be analyzed is accompanied by a function name or an explanation of what it is assumed to
accomplish. then the analysis problem reduces to a verification of the stated function. The
analysis can be performed manually by finding the Boolean functions or truth table or by using
a computer simulation program.

124 Chapter 4 Combinational Logic

The first step in the analysis is to make sure that the given circuit is combinational and not
sequential. The diagram of a combinational circuit has logic gates with no feedback paths or
memory elements. A feedback path is a connection from the output of one gate to the input of
a second gate that forms part of the input to the first gate. Feedback paths in a digital circuit de-
fine a sequential circuit and must be analyzed according to procedures outlined in Chapter 9.

Once the logic diagram is verified to be that of a combinational circuit, one can proceed to
obtain the output Boolean functions or the truth table. If the function of the circuit is under in-
vestigation, then it is necessary to interpret the operation of the circuit from the derived Boolean
functions or truth table. The success of such an investigation is enhanced if one has previous
experience and familiarity with a wide variety of digital circuits.

To obtain the output Boolean functions from a logic diagram, we proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary symbols—but
with meaningful names. Determine the Boolean functions for each gate output.

2, Label the gates that are a function of input variables and previously labeled gates with
other arbitrary symbols. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output Boolean func-
tions in terms of input variables.

The analysis of the combinational circuit of Fig. 4.2 illustrates the proposed procedure. We
note that the circuit has three binary inputs—A, B, and C—and two binary outputs—F; and F>.

[=1

F,

FIGURE 4.2
Logic diagram for analysis example

Section 4.3 Analysis Procedure 125

The outputs of various gates are labeled with intermediate symbols. The outputs of gates that
are a function only of input variables are Ty and 75. Output F> can easily be derived from the
input variables. The Boolean functions for these three outputs are

F, = AB + AC + BC
Ti=A+B+C
T> = ABC

Next, we consider outputs of gates that are a function of already defined symbols:
T3 = FiT
=T+ T,
To obtain F; as a function of A, B, and C, we form a series of substitutions as follows:
Fy=Ty+Ty=F5T| + ABC = (AB + AC + BC)'(A + B + C) + ABC
=(A"+B)A' +C')B' +C)A+B+C)+ ABC
= (A' + B'C')(AB’' + AC' + BC' + B'C) + ABC
= A'BC’' + A'B'C + AB'C' + ABC
If we want to pursue the investigation and determine the information transformation task
achieved by this circuit, we can draw the circuit from the derived Boolean expressions and try
to recognize a familiar operation. The Boolean functions for F and F> implement a circuit dis-
cussed in Section 4.5. Merely finding a Boolean representation of a circuit doesn’t provide in-
sight into its behavior, but in this example we will observe that the Boolean equations and truth
table for F, and F> match those describing the functionality of what we call a full adder.
The derivation of the truth table for a circuit is a straightforward process once the output

Boolean functions are known. To obtain the truth table directly from the logic diagram with-
out going through the derivations of the Boolean functions, we proceed as follows:

1. Determine the number of input variables in the circuit. For n inputs, form the 2" possible
input combinations and list the binary numbers from 0 10 2" — 1 in a table,

2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates which are a function of the input
variables only.

4. Proceed to obtain the truth table for the outputs of those gates which are a function of pre-
viously defined values until the columns for all outputs are determined,

This process is illustrated with the circuit of Fig. 4.2, In Table 4.1, we form the eight possi-
ble combinations for the three input variables. The truth table for £ is determined directly from
the values of A, B, and C, with F; equal to | for any combination that has two or three inputs
equal 1o 1. The truth table for F is the complement of that of F>. The truth tables for 7) and 7>
are the OR and AND functions of the input variables, respectively. The values for T; are derived
from T, and F5: T3 is equal to | when both T and F’ are equal to 1, and T3 is equal to 0 other-
wise. Finally, F; is equal to | for those combinations in which either T or T; or both are equal

126 Chapter 4 Combinational Logic

Table 4.1

Truth Table for the Logic Diagram of Fig. 4.2
A B C F, Fj Ty T T3 F
0 0 0 0 1 0 0 0 0
0 0 I 0 1 1 0 1 1
0 1 0 0 1 1 0 1 1
0 1 1 1 0 1 0 0 0
1 0 0 0 1 1 0 1 1
1 0 1 1 0 1 0 0 0
1 1 0 I 0 1 0 0 0
1 1 I ! 0 1 1 0 1

to 1. Inspection of the truth table combinations for A, B, C, F}, and F> shows that it is identical
to the truth table of the full adder given in Section 4.5 for x, y, z, §, and C, respectively.
Another way of analyzing a combinational circuit is by means of logic simulation, This is
not practical, however, because the number of input patterns that might be needed to generate
meaningful outputs could be very large. But simulation has a very practical application in ver-
ifying that the functionality of a circuit actually matches its specification. In Section 4.12, we
demonstrate the logic simulation and verification of the circuit of Fig. 4.2, using Verilog HDL.

4.4 DESIGN PROCEDURE

The design of combinational circuits starts from the specification of the design objective and
culminates in a logic circuit diagram or a set of Boolean functions from which the logic dia-
gram can be obtained. The procedure involves the following steps:

1. From the specifications of the circuit, determine the required number of inputs and outputs
and assign a symbol to each.

2. Derive the truth table that defines the required relationship between inputs and outputs.
3. Obtain the simplified Boolean functions for each output as a function of the input variables.
4. Draw the logic diagram and verify the correctness of the design (manually or by simulation).

A truth table for a combinational circuit consists of input columns and output columns, The
input columns are obtained from the 2" binary numbers for the » input variables. The binary
values for the outputs are determined from the stated specifications. The output functions spec-
ified in the truth table give the exact definition of the combinational circuit. It is important that
the verbal specifications be interpreted correctly in the truth table, as they are often incom-
plete, and any wrong interpretation may result in an incorrect truth table.

The output binary functions listed in the truth table are simplified by any available method,
such as algebraic manipulation, the map method, or a computer-based simplification program.
Frequently, there is a variety of simplified expressions from which to choose. In a particular

Section 4.4 Design Procedure 127

application, certain criteria will serve as a guide in the process of choosing an implementation.
A practical design must consider such constraints as the number of gates, number of inputs to
a gate, propagation time of the signal through the gates. number of interconnections, limitations
of the driving capability of each gate (i.e., the number of gates to which the output of the cir-
cuit may be connected). and various other criteria that must be taken into consideration when
designing integrated circuits. Since the importance of each constraint is dictated by the particular
application, it is difficult to make a general stalement about what constitutes an acceptable im-
plementation. In most cases, the simplification begins by satisfying an elementary objective,
such as producing the simplified Boolean functions in a standard form. Then the simplification
proceeds with further steps to meet other performance criteria.

Code Conversion Example

The availability of a large variety of codes for the same discrete elements of information re-
sults in the use of different codes by different digital systems. It is sometimes necessary 1o use
the output of one system as the input to another. A conversion circuit must be inserted between
the two systems if each uses different codes for the same information. Thus. a code converter
is a circuit that makes the two systems compatible even though each uses a different binary code.

To convert from binary code A to binary code B, the input lines must supply the bit combi-
nation of elements as specified by code A and the output lines must generate the corresponding
bit combination of code B. A combinational circuit performs this transformation by means of
logic gates. The design procedure will be illustrated by an example that converts binary coded
decimal (BCD) to the excess-3 code for the decimal digits.

The bit combinations assigned to the BCD and excess-3 codes are listed in Table 1.5 (Section
1.7). Since each code uses four bits 1o represent a decimal digit, there must be four input vari-
ables and four output variables. We designate the four input binary variables by the symbols
A, B. C.and D. and the four output variables by w. x. v. and =. The truth table relating the input
and output variables is shown in Table 4.2. The bit combinations for the inputs and their

Table 4.2
Truth Table for Code-Conversion Example
Input BCD Output Excess-3 Code

A B C D w x ¥ z
0 0 0 0 0 0 1 1
0 0 0 | 0 1 0 0
0 0 | 0 0 I 0 1
0 0 1 1 0 1 1 0
0 | 0 0 0 1 | 1
0 1 0 1 i 0 0 0
0 1 1 0 | 0 0 1
0 1 | 1 I 0 1 0
1 0 0 0 1 0 | 1
1 0 0 1 1 | 0 0

128

Chapter 4 Combinational Logic

corresponding outputs are obtained directly from Section 1.7. Note that four binary variables
may have 16 bit combinations, but only 10 are listed in the truth table. The six bit combina-
tions not listed for the input variables are don't-care combinations. These values have no mean-
ing in BCD and we assume that they will never occur. Therefore, we are at liberty to assign to
the output variables either a | or a 0, whichever gives a simpler circuit.

The maps in Fig. 4.3 are plotted to obtain simplified Boolean functions for the outputs.
Each one of the four maps represents one of the four outputs of the circuit as a function of
the four input variables. The 1's marked inside the squares are obtained from the minterms
that make the output equal to 1. The 1's are obtained from the truth table by going over the
output columns one at a time, For example, the column under output z has five 1's; therefore,
the map for z has five 1's, each being in a square corresponding to the minterm that makes
z equal to 1. The six don't-care minterms 10 through 15 are marked with an X. One possi-
ble way to simplify the functions into sum-of-products form is listed under the map of each
variable. (See Chapter 3.)

B
y=CD+CD'
c
cD - TS
ABN_00__ 01l __11__ 10
my my my my
00
m,
01
B
1
A
10
—
D
x=B'C+BD+BCD’ w=A+ BC+ BD

FIGURE 4.3
Maps for BCD-to-excess-3 code converter

Section 4.4 Design Procedure 129

Atwo-level logic diagram may be obtained directly from the Boolean expressions derived from
the maps. There are various other possibilities for a logic diagram that implements this circuit.
The expressions obtained in Fig. 4.3 may be manipulated algebraically for the purpose of using
common gates for two or more outputs. This manipulation, shown next. illustrates the flexibility
obtained with multiple-output systems when implemented with three or more levels of gates:

y=CD+CD' =CD+ (C+ D)
x=B'C+ B'D+ BC'D' = B'(C + D)+ BC'D'
= B'(C + D) + B(C + D)
w=A+BC+BD=A+B(C+D)
The logic diagram that implements these expressions is shown in Fig. 4.4, Note that the OR
gate whose output is C + D has been used to implement partially each of three outputs,

Not counting input inverters, the implementation in sum-of-products form requires seven
AND gates and three OR gates. The implementation of Fig. 4.4 requires four AND gates, four
OR gates, and one inverter. If only the normal inputs are available, the first implementation will
require inverters for variables B, C, and D, and the second implementation will require in-
verters for variables B and D. Thus, the three-level logic circuil requires fewer gates, all of
which in turn require no more than two inputs.

P
e y
__[>—-——{>o—< (€ +DY

C+D

ra

A

FIGURE 4.4
Logic diagram for BCD-to-excess-3 code converter

130

4.5

Chapter 4 Combinational Logic

BINARY ADDER-SUBTRACTOR

Digital computers perform a variety of information-processing tasks. Among the functions en-
countered are the various arithmetic operations. The most basic arithmetic operation is the ad-
dition of two binary digits. This simple addition consists of four possible elementary operations:
0+0=00+1=1,1+0=1,and 1 + 1 = 10. The first three operations produce a
sum of one digit, but when both augend and addend bits are equal to 1, the binary sum con-
sists of two digits. The higher significant bit of this result is called a carry. When the augend
and addend numbers contain more significant digits, the carry obtained from the addition of two
bits is added to the next higher order pair of significant bits. A combinational circuit that per-
forms the addition of two bits is called a half adder. One that performs the addition of three
bits (two significant bits and a previous carry) is a full adder. The names of the circuits stem
from the fact that two half adders can be employed to implement a full adder.

A binary adder—subtractor is a combinational circuit that performs the arithmetic operations
of addition and subtraction with binary numbers. We will develop this circuit by means of a hi-
erarchical design. The half adder design is carried out first, from which we develop the full
adder. Connecting n full adders in cascade produces a binary adder for two n-bit numbers. The
subtraction circuit is included in a complementing circuit.

Half Adder

From the verbal explanation of a half adder, we find that this circuit needs two binary inputs
and two binary outputs. The input variables designate the augend and addend bits; the output
variables produce the sum and carry. We assign symbols x and y to the two inputs and S (for
sum) and C (for carry) to the outputs. The truth table for the half adder is listed in Table 4.3.
The C output is | only when both inputs are 1. The § output represents the least significant bit
of the sum.

The simplified Boolean functions for the two outputs can be obtained directly from the truth
table. The simplified sum-of-products expressions are

§=x'y+ xy
C = xy
The logic diagram of the half adder implemented in sum of products is shown in Fig. 4.5(a).

It can be also implemented with an exclusive-OR and an AND gate as shown in Fig. 4.5(b).
This form is used to show that two half adders can be used to construct a full adder.

Table 4.3
Half Adder

X 14

—-_——c o
=l = =

— o000 |
o= =0 L]

Full Adder

Section 4.5 Binary Adder-Subtractor 131

X
v
s
X N—y 4
X
: D
(a)§=x" +x'y (b)S=x8y
C=ay C=xy
FIGURE 4.5

Implementation of half adder

A full adder is a combinational circuit that forms the arithmetic sum of three bits, It consists of three
inputs and two outputs. Two of the input variables, denoted by x and v, represent the two signifi-
cant bits to be added. The third input, z, represents the carry from the previous lower significant
position. Two outputs are necessary because the arithmetic sum of three binary digits ranges in value
from 0 to 3. and binary 2 or 3 needs two digits. The two outputs are designated by the symbols §
for sum and € for carry. The binary variable S gives the value of the least significant bit of the sum.
The binary variable C gives the output carry. The truth table of the full adder is listed in Table 4.4.
The eight rows under the input variables designate all possible combinations of the three vari-
ables. The output variables are determined from the arithmetic sum of the input bits, When all
input bits are 0, the output is 0. The S output is equal to | when only one input is equal to | or when
all three inputs are equal to 1. The € output has a carry of 1 if two or three inputs are equal to 1.

The input and output bits of the combinational circuit have different interpretations at var-
ious stages of the problem. On the one hand, physically, the binary signals of the inputs are con-
sidered binary digits to be added arithmetically to form a two-digit sum at the output, On the
other hand. the same binary values are considered as variables of Boolean functions when ex-
pressed in the truth table or when the circuit is implemented with logic gates. The maps for the
outputs of the full adder are shown in Fig. 4.6. The simplified expressions are

Table 4.4

Full Adder

X y z C 5
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 | 0
1 0 0 0 1
1 0 | 1 0
1 1 0 | 0
1 1 | | 1

132 Chapter 4 Combinational Logic

¥z — e — Yz

X 00 ol 11 10 e 00
"y m, my my my
0 1 1 0
"y my my Iy my
edlll 1 x4l
—
Z
FIGURE 4.6

Maps for full adder

S = x!yrz + -rryz! + xyrz!' + x}‘z
C=xy+axz+yz
The logic diagram for the full adder implemented in sum-of-products form is shown in Fig. 4.7.

It can also be implemented with two half adders and one OR gate, as shown in Fig. 4.8. The S output
from the second half adder is the exclusive-OR of z and the output of the first half adder,

giving
§S=z0(xDy)
=2'(xy' + x'y) +z(xy' + x'y)’
= z'(xy' + x'y) + z(xy + x'y')
=xy'z + x'yz' + xyz + x'y'z
The carry output is
C=z(xy +x'y) +xy=xy'z+ x'yz + xy

FIGURE 4.7
Implementation of full adder in sum-of-products form

rate

Section 4.5 Binary Adder-Subtractor 133

r xBy _ﬂ\(x@y)@z
y 1 s S

7

(x@®y)z

(xBy)z+xy

z

FIGURE 4.8
Implementation of full adder with two half adders and an OR gate

Binary Adder

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can
be constructed with full adders connected in cascade, with the output carry from each full adder
connected to the input carry of the next full adder in the chain. Figure 4.9 shows the interconnection
of four full-adder (FA) circuits to provide a four-bit binary ripple carry adder. The augend bits of
A and the addend bits of B are designated by subscript numbers from right to left, with subseript
0 denoting the least significant bit. The carries are connected in a chain through the full adders.
The input carry to the adder is Cy, and it ripples through the full adders to the output carry Cy.
The § outputs generate the required sum bits. An n-bit adder requires » full adders, with each out-
put carry connected to the input carry of the next higher order full adder.

To demonstrate with a specific example, consider the two binary numbers A = 1011 and
B = 0011. Their sum § = 1110 is formed with the four-bit adder as follows:

Subscript i: 3 2 10
Input carry o LI N C;
Augend I 0 1 1 A;
Addend 0o 0 1 | B;
Sum I 1 1 @ S;
Output carry oW & 2 Cisy

The bits are added with full adders, starting from the least significant position (subscript 0), to
form the sum bit and carry bit. The input carry Cy, in the least significant position must be 0.
The value of C;4 | in a given significant position is the output carry of the full adder. This value
is transferred into the input carry of the full adder that adds the bits one higher significant po-
sition to the left, The sum bits are thus generated starting from the rightmost position and are
available as soon as the corresponding previous carry bit is generated. All the carries must be
generated for the correct sum bits to appear at the outputs,

The four-bit adder is a typical example of a standard component. It can be used in many ap-
plications involving arithmetic operations. Observe that the design of this circuit by the clas-
sical method would require a truth table with 2° = 512 entries, since there are nine inputs to

134

Chapter 4 Combinational Logic

By Ay

G

C,l St

FIGURE 4.9
Four-bit adder

the circuit. By using an iterative method of cascading a standard function, it is possible to ob-
tain a simple and straightforward implementation,

Carry Propagation

The addition of two binary numbers in parallel implies that all the bits of the augend and addend
are available for computation at the same time. As in any combinational circuit, the signal must
propagate through the gates before the correct output sum is available in the output terminals. The
total propagation time is equal to the propagation delay of a typical gate, times the number of gate
levels in the circuit. The longest propagation delay time in an adder is the time it takes the carry
to propagate through the full adders. Since each bit of the sum output depends on the value of the
input carry, the value of S; at any given stage in the adder will be in its steady-state final value
only after the input carry to that stage has been propagated. In this regard, consider output §; in
Fig. 4.9. Inputs A3 and B, are available as soon as input signals are applied to the adder. How-
ever, input carry C5 does not settle to its final value until C; is available from the previous stage.
Similarly, C; has to wait for C; and so on down to Cy. Thus, only after the carry propagates and
ripples through all stages will the last output 5; and carry C; settle to their final correct value.
The number of gate levels for the carry propagation can be found from the circuit of the full
adder. The circuit is redrawn with different labels in Fig. 4.10 for convenience. The input and

A
B

G

FIGURE 4.10
Full adder with P and G shown

Section 4.5 Binary Adder-Subtractor 135

output variables use the subscript i to denote a typical stage of the adder. The signals at £, and
G; settle to their steady-state values after they propagate through their respective gates. These
two signals are commeon to all full adders and depend only on the input augend and addend bits.
The signal from the input carry C, to the output carry C;_; propagates through an AND gate
and an OR gate. which constitute two gate levels. If there are four full adders in the adder. the
output carry Cy would have 2 X 4 = 8 gate levels from C to Cy. For an n-bit adder, there are
2n gate levels for the carry to propagate from input to output.

The carry propagation time is an important attribute of the adder because it limits the speed
with which two numbers are added. Although the adder—or, for that matter, any combina-
tional circuit—will always have some value at its output terminals, the outputs will not be cor-
rect unless the signals are given enough time to propagate through the gates connected from
the inputs to the outputs. Since all other arithmetic operations are implemented by successive
additions. the time consumed during the addition process is critical. An obvious solution for
reducing the carry propagation delay time 1s to employ faster gates with reduced delays. How-
ever, physical circuits have a limit to their capability. Another solution is to increase the com-
plexity of the equipment in such a way that the carry delay time is reduced. There are several
techniques for reducing the carry propagation time in a parallel adder. The most widely used
technique employs the principle of carry lookahead logic.

Consider the circuit of the full adder shown in Fig, 4.10. If we define two new binary variables

Pi=A®B
G; = AiB;
the output sum and carry can respectively be expressed as
S =P®C
Cis1 =G + PC,

G; is called a carry generare, and it produces a carry of | when both A, and B, are 1, regard-
less of the input carry C,. B, is called a carry propagate, because it determines whether a carry
into stage 1 will propagate into stage i + | (i.e.. whether an assertion of C; will propagate to
an assertion of C,).

We now write the Boolean functions for the carry outputs of each stage and substitute the
value of each C; from the previous equations:

Cp = input carry

Cy = Gy + PyCy

Cy =G+ P\C) = Gy + P\(Gy + PyCy) = Gy + PGy + P1PyCy
C3 = Gy + PiC3 = Gy + PaG| + P2P |Gy = P2P1PCy

Since the Boolean function for cach output carry is expressed in sum-of-products form, each func-
tion can be implemented with one level of AND gates followed by an OR gate (or by a two-level
NAND). The three Boolean functions for €|, Cs, and C; are implemented in the carry lookahead
generator shown in Fig. 4.11. Note that this circuit can add in less time because C3 does not have
to wait for C> and C to propagate: in fact. C; is propagated at the same time as C and Cs. This
gain in speed of operation is achieved at the expense of additional complexity (hardware).

136

Chapter 4 Combinational Logic

G,

Gy

Py

Gy

Co

FIGURE 4.11
Logic diagram of carry lookahead generator

The construction of a four-bit adder with a carry lookahead scheme is shown in Fig. 4.12.
Each sum output requires two exclusive-OR gates. The output of the first exclusive-OR gate
generates the F; variable, and the AND gate generates the G; variable. The carries are propa-
gated through the carry lookahead generator (similar to that in Fig. 4.11) and applied as inputs
to the second exclusive-OR gate. All output carries are generated after a delay through two
levels of gates. Thus, outputs S; through §3 have equal propagation delay times. The two-level
circuit for the output carry Cy is not shown. This circuit can easily be derived by the equation-
substitution method.

Binary Subtractor

The subtraction of unsigned binary numbers can be done most conveniently by means of com-
plements, as discussed in Section 1.5, Remember that the subtraction A — B can be done by
taking the 2's complement of B and adding it to A. The 2's complement can be obtained by tak-
ing the 1's complement and adding 1 to the least significant pair of bits. The 1's complement
can be implemented with inverters, and a 1 can be added to the sum through the input carry.

Section 4.5 Binary Adder-Subtractor 137

GpF———0G
By ——

A Fs

?

G

i

= =
J L
T

!

B - Generator
; o

Ay

[

D
c D
| —

G

i

Gy

£y

%

Gy

?

Cy Co

FIGURE 4.12
Four-bit adder with carry lookahead

The circuit for subtracting A — B consists of an adder with inverters placed between each
data input B and the corresponding input of the full adder. The input carry Cy must be equal to
| when subtraction is performed. The operation thus performed becomes A, plus the 1's com-
plement of B, plus 1. This is equal 1o A plus the 2's complement of B. For unsigned numbers,
that gives A — Bif A = Borthe 2's complementof (B — A) if A < B. For signed numbers,
the resultis A — B, provided that there is no overflow. (See Section 1.6.)

The addition and subtraction operations can be combined into one circuit with one common
binary adder by including an exclusive-OR gate with each full adder. A four-bit adder-subtractor
circuit is shown in Fig. 4.13. The mode input M controls the operation. When M = 0, the cir-
cuit is an adder, and when M = 1, the circuit becomes a subtractor. Each exclusive-OR gate
receives input M and one of the inputs of B. When M = 0, we have B @ 0 = B. The full adders
receive the value of B, the input carry is 0, and the circuit performs A plus B. When M = 1,

138 Chapter 4 Combinational Logic

By As B, A, B, A By A

G

Overflow

FIGURE 4.13
Four-bit adder-subtractor

we have B | = B’ and Cy = 1. The B inputs are all complemented and a 1 is added through
the input carry. The circuit performs the operation A plus the 2’s complement of B. (The ex-
clusive-OR with output V is for detecting an overflow.)

It is worth noting that binary numbers in the signed-complement system are added and sub-
tracted by the same basic addition and subtraction rules as are unsigned numbers. Therefore,
computers need only one common hardware circuit to handle both types of arithmetic. The
user or programmer must interpret the results of such addition or subtraction differently, de-
pending on whether it is assumed that the numbers are signed or unsigned.

When two numbers with n digits each are added and the sum is a number occupying n + 1 dig-
its, we say that an overflow occurred. This is true for binary or decimal numbers, signed or un-
signed. When the addition is performed with paper and pencil, an overflow is not a problem,
since there is no limit by the width of the page to write down the sum. Overflow is a problem
in digital computers because the number of bits that hold the number is finite and a result that
contains n + 1 bits cannot be accommodated by an n-bit word. For this reason, many computers
detect the occurrence of an overflow, and when it occurs, a corresponding flip-flop is set that
can then be checked by the user.

The detection of an overflow after the addition of two binary numbers depends on whether the
numbers are considered to be signed or unsigned. When two unsigned numbers are added, an
overflow is detected from the end carry out of the most significant position. In the case of signed
numbers, two details are important: the leftmost bit always represents the sign, and negative

Section 4.6 Decimal Adder 139

numbers are in 2's-complement form. When two signed numbers are added, the sign bit is
treated as part of the number and the end carry does not indicate an overflow.

An overflow cannot occur after an addition if one number is positive and the other is neg-
ative, since adding a positive number (o a negative number produces a result whose magnitude
is smaller than the larger of the two original numbers. An overflow may occur if the two num-
bers added are both positive or both negative. To see how this can happen, consider the following
example: Two signed binary numbers, +70 and +80, are stored in two eight-bit registers. The
range of numbers that each register can accommodate is from binary +127 to binary —128.
Since the sum of the two numbers is + 150, it exceeds the capacity of an eight-bit register. This
is also true for —70 and —80. The two additions in binary are shown next, together with the
last two carries:

carries: 0 1 carries: 1 0
+70 0 1000110 =70 1 0111010
_+80 01010000 80 10110000
+150 1 0010110 -150 0 1101010

Note that the eight-bit result that should have been positive has a negative sign bit (i.e., the
8-th bit) and the eight-bit result that should have been negative has a positive sign bit. If, how-
ever, the carry out of the sign bit position is taken as the sign bit of the result, then the nine-bit
answer so obtained will be correct. But since the answer cannot be accommodated within eight
bits, we say that an overflow has occurred.

An overflow condition can be detected by observing the carry into the sign bit position and
the carry out of the sign bit position. If these two carries are not equal, an overflow has occurred.
This is indicated in the examples in which the two carries are explicitly shown. If the two car-
ries are applied to an exclusive-OR gate, an overflow is detected when the output of the gate
is equal to |. For this method to work correctly, the 2's complement of a negative number must
be computed by taking the 1's complement and adding 1. This takes care of the condition when
the maximum negative number is complemented.

The binary adder—subtractor circuit with outputs C and V is shown in Fig. 4.13. If the two
binary numbers are considered to be unsigned, then the C bit detects a carry after addition or
a borrow after subtraction, If the numbers are considered to be signed, then the V bit detects
an overflow. If V = 0 after an addition or subtraction, then no overflow occurred and the n-
bit result is correct. If V' = |, then the result of the operation contains 2 + 1 bits, but only the
rightmost n bits of the number fit in the space available, so an overflow has occurred. The
(n + 1)th bit is the actual sign and has been shifted out of position.

4.6 DECIMAL ADDER

Computers or calculators that perform arithmetic operations directly in the decimal number sys-
tem represent decimal numbers in binary coded form. An adder for such a computer must em-
ploy arithmetic circuits that accept coded decimal numbers and present results in the same code.
For binary addition, it is sufficient to consider a pair of significant bits together with a previous
carry. A decimal adder requires a minimum of nine inputs and five outputs, since four bits are
required to code each decimal digit and the circuit must have an input and output carry. There

140 Chapter 4 Combinational Logic

is a wide variety of possible decimal adder circuits, depending upon the code used to represent
the decimal digits. Here we examine a decimal adder for the BCD code. (See Section 1.7.)

BCD Adder

Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from
a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than
9 + 9 + 1 =19, the | in the sum being an input carry. Suppose we apply two BCD digits to
a four-bit binary adder. The adder will form the sum in binary and produce a result that ranges
from O through 19. These binary numbers are listed in Table 4.5 and are labeled by symbols
K, Zg, Z4, Z>, and Z,. K is the carry, and the subscripts under the letter Z represent the weights
8,4, 2. and 1 that can be assigned to the four bits in the BCD code. The columns under the bi-
nary sum list the binary value that appears in the outputs of the four-bit binary adder. The out-
put sum of two decimal digits must be represented in BCD and should appear in the form listed
in the columns under “BCD Sum.” The problem is to find a rule by which the binary sum is
converted to the correct BCD digit representation of the number in the BCD sum.

In examining the contents of the table, it becomes apparent that when the binary sum is
equal to or less than 1001, the corresponding BCD number is identical, and therefore no conversion
is needed. When the binary sum is greater than 1001, we obtain an invalid BCD representation.

Table 4.5
Derivation of BCD Adder
Binary Sum BCD Sum Decimal

K Zyg 2 L I C Sg 54 52 5

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 | 0 0 0 8
0 1 0 0 1 0 | 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 | 0 | 1 1 0 0 0 1 11
0 1 l 0 0] 0 0 1 0 12
0 1 1 0 1 1 0 0 1 | 13
0 1 1 1 0 1 0 1 0 0 14
0 | 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
| 0 0 0 1 1 0 1 1 l 17
1 0 0 | 0 | 1 0 0 0 18
1 0 0 1 1 1 | 0 0 1 19

Section 4.6 Decimal Adder 141

The addition of binary 6 (0110) 10 the binary sum converts it 1o the correct BCD representa-
tion and also produces an output carry as required.

The logic circuit that detects the necessary correction can be derived from the entries in the
table. It is obvious that a correction is needed when the binary sum has an output carry K = 1.
The other six combinations from 1010 through 1111 that need a correction have a | in position
2. To distinguish them from binary 1000 and 1001, which also have a | in position Zg, we spec-
ify further that either Zy or Z; must have a 1, The condition for a correction and an output
carry can be expressed by the Boolean function

C =K + ZgZy + Z3Z,

When C = 1. itis necessary to add 0110 to the binary sum and provide an output carry for the
next stage.

ABCD adder that adds two BCD digits and produces a sum digit in BCD is shown in Fig. 4.14.
The two decimal digits, together with the input carry, are first added in the top four-bit adder to
produce the binary sum. When the output carry is equal to 0, nothing is added to the binary sum.

Addend Augend
Camy Kk dcbitbinary adder — Carny
>SS AR e
|
0
o B
0
I " 1"]’ . '
& 5 5
FIGURE 4.14

Block diagram of a BCD adder

142 Chapter 4 Combinational Logic

When it is equal to 1, binary 0110 is added to the binary sum through the bottom four-bit adder.
The output carry generated from the bottom adder can be ignored, since it supplies information
already available at the output carry terminal. A decimal parallel adder that adds » decimal dig-
its needs n BCD adder stages. The output carry from one stage must be connected to the input
carry of the next higher order stage.

4.7 BINARY MULTIPLIER

Multiplication of binary numbers is performed in the same way as multiplication of decimal num-
bers. The multiplicand is multiplied by each bit of the multiplier, starting from the least signifi-
cant bit. Each such multiplication forms a partial product. Successive partial products are shifted
one position to the left. The final product is obtained from the sum of the partial products.

To see how a binary multiplier can be implemented with a combinational circuit, consider
the multiplication of two 2-bit numbers as shown in Fig. 4.15. The multiplicand bits are By and
By, the multiplier bits are A} and A, and the product is C3C5CCy. The first partial product is
formed by multiplying BBy by Ag. The multiplication of two bits such as Ay and By produces
a 1 if both bits are 1; otherwise, it produces a 0. This is identical to an AND operation. There-
fore, the partial product can be implemented with AND gates as shown in the diagram. The sec-
ond partial product is formed by multiplying BBy by A and shifting one position to the left.
The two partial products are added with two half-adder (HA) circuits. Usually, there are more
bits in the partial products and it is necessary to use full adders to produce the sum of the partial

B, B, Ao
A Ay
AB, AdB,
AB, AB,
C: (o (&) Gy Ay

FIGURE 4.15
Two-bit by two-bit binary multiplier

Section 4.7 Binary Multiplier 143

products. Note that the least significant bit of the product does not have to go through an adder,
since it is formed by the output of the first AND gate.

A combinational circuit binary multiplier with more bits can be constructed in a similar
fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels
as there are bits in the multiplier. The binary output in each level of AND gates is added with
the partial product of the previous level to form a new partial product. The last level produces
the product. For J multiplier bits and K multiplicand bits, we need (J X K) AND gates and
(J — 1) K-bit adders to produce a product of J + K bits.

As a second example, consider a multiplier circuit that multiplies a binary number represented
by four bits by a number represented by three bits. Let the multiplicand be represented by Bz B,8, B,
and the multiplier by A>A Ay, Since K = 4 and J = 3, we need 12 AND gates and 2 four-bit
adders to produce a product of seven bits. The logic diagram of the multiplier is shown in Fig. 4.16.

Ay
Ay
G Addend i Agend
i 0 &hitndder ;
: Sum and output carry.
Ay

FIGURE 4.16
Four-bit by three-bit binary multiplier

Co

144 Chapter 4 Combinational Logic

4.8 MAGNITUDE COMPARATOR

The comparison of two numbers is an operation that determines whether one number is greater
than, less than, or equal to the other number. A magnitude comparator is a combinational cir-
cuit that compares two numbers A and B and determines their relative magnitudes. The outcome
of the comparison is specified by three binary variables that indicate whether A > B, A = B,
orA < B.

On the one hand, the circuit for comparing two n-bit numbers has 2*" entries in the truth
table and becomes too cumbersome, even with n = 3. On the other hand, as one may sus-
pect, a comparator circuit possesses a certain amount of regularity. Digital functions that
possess an inherent well-defined regularity can usually be designed by means of an algo-
rithm—a procedure which specifies a finite set of steps that, if followed, give the solution
to a problem. We illustrate this method here by deriving an algorithm for the design of a
four-bit magnitude comparator.

The algorithm is a direct application of the procedure a person uses to compare the relative
magnitudes of two numbers. Consider two numbers, A and B, with four digits each, Write the
coefficients of the numbers in descending order of significance:

A = Az3AA 1A
B = B3BzB|B{}

Each subscripted letter represents one of the digits in the number. The two numbers are equal
if all pairs of significant digits are equal: A3 = B3, Ay = By, A| = By, and Ag = By. When
the numbers are binary, the digits are either | or 0, and the equality of each pair of bits can be
expressed logically with an exclusive-NOR function as

X; = A;B; + AlB| fori =0,1,2,3

where x; = 1 only if the pair of bits in position are equal (i.e., if both are 1 or both are 0).

The equality of the two numbers A and B is displayed in a combinational circuit by an
output binary variable that we designate by the symbol (A = B). This binary variable is
equal to 1 if the input numbers, A and B, are equal, and is equal to 0 otherwise. For equal-
ity to exist, all x; variables must be equal to 1, a condition that dictates an AND operation
of all variables:

(A = B) = x3xx1Xg

The binary variable (A = B) is equal to 1 only if all pairs of digits of the two numbers are equal.

To determine whether A is greater or less than B, we inspect the relative magnitudes of pairs
of significant digits, starting from the most significant position. If the two digits of a pair are
equal, we compare the next lower significant pair of digits, The comparison continues until a
pair of unequal digits is reached. If the corresponding digit of A is 1 and that of B is 0, we con-
clude that A > B. If the corresponding digit of A is 0 and that of B is 1, we have A < B. The
sequential comparison can be expressed logically by the two Boolean functions

(A > B) = A3B3 + x3A;B5 + x30A | B] + x3x2x1A0Bp
(A < B) = AiBy + x3A58; + x3x2A1B] + x3v:x1A08)

Section 4.8 Magnitude Comparator 145

The symbols (A > B) and (A < B) are binary output variables that are equal to 1 when
A > Band A < B, respectively.

The gate implementation of the three output variables just derived is simpler than it seems
because it involves a certain amount of repetition. The unequal outputs can use the same
gates that are needed to generate the equal output. The logic diagram of the four-bit magni-
tude comparator is shown in Fig. 4.17. The four x outputs are generated with exclusive-NOR
circuits and are applied to an AND gate to give the output binary variable (A = B). The
other two outputs use the x variables to generate the Boolean functions listed previously.
This is a multilevel implementation and has a regular pattern. The procedure for oblaining
magnitude comparator circuits for binary numbers with more than four bits is obvious from
this example.

(A< B)

(A>B)

(A=8)

FIGURE 4.17
Four-bit magnitude comparator

146 Chapter 4 Combinational Logic

4.9 DECODERS

Discrete quantities of information are represented in digital systems by binary codes. A binary
code of n bits is capable of representing up to 2" distinct elements of coded information. A dec-
oder is a combinational circuit that converts binary information from # input lines to a maxi-
mum of 2" unique output lines. If the n-bit coded information has unused combinations, the
decoder may have fewer than 2" outputs.

The decoders presented here are called n-to-m-line decoders, where m < 2", Their purpose
is 10 generate the 2" (or fewer) minterms of n input variables, The name decoder is also used
in conjunction with other code converters, such as a BCD-to-seven-segment decoder.

As an example, consider the three-to-eight-line decoder circuit of Fig. 4.18. The three inputs
are decoded into eight outputs, each representing one of the minterms of the three input variables.
The three inverters provide the complement of the inputs, and each one of the eight AND gates
generates one of the minterms. A particular application of this decoder is binary-to-octal

J

Dy = .\"_\"-’C’

D>

D; - I')'.i

(2]

D: = I.}':'

D;=x'yz

Ds=xy'z

Dy= xyz {

Je0ea0a8g@ o

FIGURE 4.18
Three-to-eight-line decoder

Section 4.9 Decoders 147

Table 4.6
Truth Table of a Three-to-Eight-Line Decoder
Inputs Outputs

X Yy z Dy Dy Dy D3 Dy Ds Dg Dy
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 | 0 0 0 0 0 0 0 1 0
1 1 ! 0 0 0 0 0 0 0 1

conversion. The input variables represent a binary number, and the outputs represent the eight
digits of a number in the octal number system. However, a three-to-eight-line decoder can be
used for decoding any three-bit code to provide eight outputs, one for each element of the code.

The operation of the decoder may be clarified by the truth table listed in Table 4.6. For each
possible input combination, there are seven outputs that are equal to 0 and only one that is
equal to 1. The output whose value is equal to | represents the minterm equivalent of the bi-
nary number currently available in the input lines.

Some decoders are constructed with NAND gates. Since a NAND gate produces the AND op-
eration with an inverted output, it becomes more economical to generate the decoder minterms
in their complemented form. Furthermore. decoders include one or more enable inputs to con-
trol the circuit operation. A two-to-four-line decoder with an enable input constructed with NAND
gates is shown in Fig. 4.19. The circuit operates with complemented outputs and a complement

E A B Dy Dy Dy Dy
1 X X 1 1 1 1
—T—Do— oo o0 | 0 1 1 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1
0 1 1 1 1 1 0
(a) Logic diagram (b) Truth table

FIGURE 4.19
Two-to-four-line decoder with enable input

148

Chapter 4 Combinational Logic

enable input. The decoder is enabled when E is equal to 0 (i.e., active-low enable), As indicated
by the truth table, only one output can be equal to 0 at any given time; all other outputs are equal
to 1. The output whose value is equal to 0 represents the minterm selected by inputs A and B. The
circuit is disabled when E is equal to 1, regardless of the values of the other two inputs. When
the circuit is disabled, none of the outputs are equal to 0 and none of the minterms are selected.
In general, a decoder may operate with complemented or uncomplemented outputs. The enable
input may be activated with a O or with a 1 signal. Some decoders have two or more enable in-
puts that must satisfy a given logic condition in order to enable the circuit.

A decoder with enable input can function as a demulriplexer—a circuit that receives infor-
mation from a single line and directs it to one of 2" possible output lines. The selection of a spe-
cific output is controlled by the bit combination of n selection lines, The decoder of Fig. 4.19
can function as a one-to-four-line demultiplexer when E is taken as a data input line and A and
B are taken as the selection inputs. The single input variable £ has a path to all four outputs,
but the input information is directed to only one of the output lines, as specified by the binary
combination of the two selection lines A and B. This feature can be verified from the truth
table of the circuit, For example, if the selection lines AB = 10, output D, will be the same as
the input value E, while all other outputs are maintained at 1. Because decoder and demulti-
plexer operations are obtained from the same circuit, a decoder with an enable input is referred
to as a decoder—demultiplexer,

Decoders with enable inputs can be connected together to form a larger decoder circuit.
Figure 4.20 shows two 3-to-8-line decoders with enable inputs connected to form a 4-to-16-
line decoder. When w = 0, the top decoder is enabled and the other is disabled. The bottom
decoder outputs are all 0's. and the top eight outputs generate minterms 0000 to 0111. When
w = |, the enable conditions are reversed: The bottom decoder outputs generate minterms
1000 to 1111, while the outputs of the top decoder are all 0’s. This example demonstrates the
usefulness of enable inputs in decoders and other combinational logic components. In general,
enable inputs are a convenient feature for interconnecting two or more standard components
for the purpose of combining them into a similar function with more inputs and outputs.

ik f—owen
- ' E :

W >c '

SR
- -decoder -
E‘. i o

FIGURE 4.20
4 % 16 decoder constructed with two 3 X 8 decoders

D“ o DIS

Section 4.9 Decoders 149

Combinational Logic Implementation

A decoder provides the 2" minterms of n input variables. Each asserted output of the decoder
is associated with a unique pattern of input bits, Since any Boolean function can be expressed
in sum-of-minterms form, a decoder that generates the minterms of the function, together with
an external OR gate that forms their logical sum, provides a hardware implementation of the
function, In this way, any combinational circuit with » inputs and m outputs can be imple-
mented with an n-t0-2"-line decoder and m OR gates,

The procedure for implementing a combinational circuit by means of a decoder and OR
gales requires that the Boolean function for the circuit be expressed as a sum of minterms. A
decoder is then chosen that generates all the minterms of the input variables. The inputs to each
OR gate are selected from the decoder outputs according to the list of minterms of each func-
tion. This procedure will be illustrated by an example that implements a full-adder circuit.

From the truth table of the full adder (see Table 4.4), we obtain the functions for the com-
binational circuit in sum-of-minterms form:

S(x,y,z)=Z(1.2.4.7)
Clx, yz) = 2(3,5,6.7)

Since there are three inputs and a total of eight minterms, we need a three-to-eight-line de-
coder. The implementation is shown in Fig, 4,21, The decoder generates the eight minterms for
x, ¥, and z, The OR gate for output § forms the logical sum of minterms 1, 2, 4, and 7. The OR
gate for output € forms the logical sum of minterms 3, 5, 6. and 7.

A function with a long list of minterms requires an OR gate with a large number of inputs.
A function having a list of k minterms can be expressed in its complemented form F' with
2" — k minterms. If the number of minterms in the function is greater than 2"/2, then F* can
be expressed with fewer minterms, In such a case, it is advantageous to use a NOR gate to
sum the minterms of F'. The output of the NOR gate complements this sum and generates the
normal output £, If NAND gates are used for the decoder. as in Fig. 4.19, then the external gates
must be NAND gates instead of OR gates. This is because a two-level NAND gate circuit im-
plements a sum-of-minterms function and is equivalent to a two-level AND-OR circuit.

FIGURE 4.21
Implementation of a full adder with a decoder

150

4.10

Chapter 4 Combinational Logic

ENCODERS

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has
2" (or fewer) input lines and # output lines. The output lines, as an aggregate, generate the bi-
nary code corresponding to the input value. An example of an encoder is the octal-to-binary
encoder whose truth table is given in Table 4.7. It has eight inputs (one for each of the octal
digits) and three outputs that generate the corresponding binary number. It is assumed that only
one input has a value of | at any given time.

The encoder can be implemented with OR gates whose inputs are determined directly from
the truth table. Output : is equal to 1 when the input octal digitis 1, 3, 5, or 7. Output y is | for
octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7. These conditions can be ex-
pressed by the following Boolean output functions:

z=Dy+ D3+ Ds+ Dy
y =Dy + D3 + Dg + Dy
Dy + Ds + Dg + Dq

X

The encoder can be implemented with three OR gates.

The encoder defined in Table 4.7 has the limitation that only one input can be active at any
given time. If two inputs are active simultaneously, the output produces an undefined combi-
nation. For example, if D; and Dg are 1 simultaneously. the output of the encoder will be 111
because all three outputs are equal to 1. The output 111 does not represent either binary 3 or
binary 6. To resolve this ambiguity, encoder circuits must establish an input priority to ensure
that only one input is encoded. If we establish a higher priority for inputs with higher subscript
numbers, and if both D5 and Dj are 1 at the same time, the output will be 110 because Dy has
higher priority than Ds.

Another ambiguity in the octal-to-binary encoder is that an output with all 0's is generated
when all the inputs are 0; but this output is the same as when Dy is equal to 1. The discrep-
ancy can be resolved by providing one more output to indicate whether at least one input is
equal to 1.

Table 4.7
Truth Table of an Octal-to-Binary Encoder

Inputs Outputs
Do Dy D;

4
g
4
&

cocoocooc—
cccococo—0o
ccocooc—-co
cococo—ococcoc
co—ccoo
co—~ocoocoC
c—ocooccocoo
—~cocoococecco |P
————cacoco |x
——oco—-~co |w
=

—
=

Section 4.10 Encoders 151

Table 4.8
Truth Table of a Prierity Encoder
Inputs OQutputs

Do .D] D: D; X y v
0 0 0 0 X X 0
1 0 0 0 0 0 1
X 1 0 0 0 1 |
X X 1 0 1 0 1
X X X 1 1 1 1

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function. The operation of the
priority encoder is such that if two or more inputs are equal to 1 at the same time, the input hav-
ing the highest priority will take precedence. The truth table of a four-input priority encoder is
given in Table 4.8. In addition to the two outputs x and v, the circuit has a third output desig-
nated by V: this is a valid bit indicator that is set to | when one or more inputs are equal to 1.
If all inputs are 0, there is no valid input and V is equal to 0. The other two outputs are not in-
spected when V equals 0 and are specified as don’t-care conditions, Note that whereas X's in
output columns represent don't-care conditions, the X's in the input columns are useful for
representing a truth table in condensed form. Instead of listing all 16 minterms of four variables,
the truth table uses an X to represent either | or 0. For example, X100 represents the two
minterms 0100 and 1100,

According to Table 4.8, the higher the subscript number, the higher the priority of the input,
Input Dy has the highest priority. so, regardless of the values of the other inputs, when this

D,
D.D, DD el |
AN DON 0 w1 1w
i, iy — " =
00| X Wl X |& =
my
ot
o D,
1
Dy iy
10
x=D.+D, 9= Dy+ DyD%
FIGURE 4.22

Maps for a priority encoder

152 Chapter 4 Combinational Logic

D,
D, DO—Lﬁ '
D, —
i ;; X
g, >
Dy i
FIGURE 4.23

Four-input priority encoder

input is 1, the output for xy is 11 (binary 3). D, has the next priority level. The output is 10 if
D, = 1, provided that Dy = (), regardless of the values of the other two lower priority inputs.
The output for Dy is generated only if higher priority inputs are 0, and so on down the priority
levels.

The maps for simplifying outputs x and y are shown in Fig. 4.22. The minterms for the
two functions are derived from Table 4.8, Although the table has only five rows, when each
X in a row is replaced first by 0 and then by 1, we obtain all 16 possible input combinations.
For example, the fourth row in the table, with inputs XX10, represents the four minterms
0010, 0110, 1010, and 1110. The simplified Boolean expressions for the priority encoder
are obtained from the maps. The condition for output V'is an OR function of all the input vari-
ables. The priority encoder is implemented in Fig. 4.23 according to the following Boolean
functions:

.\'=D2+Dj
y =D+ D\D;
V=Dy+ D+ Dy + Dy

4.11 MULTIPLEXERS

A multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single output line. The selection of a particular input line is controlled
by a set of selection lines. Normally, there are 2" input lines and n selection lines whose bit com-
binations determine which input is selected.

A two-to-one-line multiplexer connects one of two 1-bit sources to a common destination,
as shown in Fig. 4.24. The circuit has two data input lines, one output line, and one selection
line §. When § = 0, the upper AND gate is enabled and /, has a path to the output. When
S = 1, the lower AND gate is enabled and /| has a path to the output. The multiplexer acts like

h

L[>
(a) Logic diagram

FIGURE 4.24

Section 4.11 Multiplexers 153

Iy 0
Y MUX 3
I §1
§
(b) Block diagram

Two-to-one-line multiplexer

an electronic switch that selects one of two sources. The block diagram of a multiplexer is

sometimes depicted by a

wedge-shaped symbol. as shown in Fig, 4,24(b). It suggests visually

how a selected one of multiple data sources is directed into a single destination. The multiplexer
is often labeled “MUX" in block diagrams.

A four-to-one-line multiplexer is shown in Fig. 4.25. Each of the four inputs, /y through
I5. is applied to one input of an AND gate. Selection lines §; and §; are decoded to select a

AT,
h)
¥y
I {
I N
e
A S S| ¥
0o 0| I
0 1|4
Sp—rt 1 o| &
1 1} 1
S E]
{a) Logic diagram (b) Function table
FIGURE 4.25

Four-to-one-line multiplexer

154 Chapter 4 Combinational Logic

particular AND gate. The outputs of the AND gates are applied to a single OR gate that pro-
vides the one-line output. The function table lists the input that is passed to the output for
each combination of the binary selection values. To demonstrate the operation of the circuit,
consider the case when §,5; = 10. The AND gate associated with input I, has two of its in-
puts equal to | and the third input connected to /5. The other three AND gates have at least
one input equal to (. which makes their outputs equal to 0. The output of the OR gate is now
equal to the value of /5, providing a path from the selected input to the output. A multiplexer
is also called a data selector, since it selects one of many inputs and steers the binary infor-
mation to the output line.

The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed,
they decode the selection input lines. In general, a 2"-to-1-line multiplexer is constructed from
an n-10-2" decoder by adding 2" input lines to it, one to each AND gate. The outputs of the AND
gates are applied to a single OR gate. The size of a multiplexer is specified by the number 2"
of its data input lines and the single output line. The n selection lines are implied from the 2"
data lines. As in decoders, multiplexers may have an enable input to control the operation of
the unit. When the enable input is in the inactive state, the outputs are disabled, and when it is
in the active state, the circuit functions as a normal multiplexer.

Multiplexer circuits can be combined with common selection inputs to provide multiple-bit
selection logic. As an illustration, a quadruple 2-to-1-line multiplexer is shown in Fig. 4.26. The
circuit has four multiplexers, each capable of selecting one of two input lines. Output ¥; can be
selected to come from either input Ag or input By. Similarly, output ¥; may have the value of
A, or By, and so on. Input selection line § selects one of the lines in each of the four multi-
plexers. The enable input E must be active (i.e., asserted) for normal operation. Although the cir-
cuit contains four 2-to-1-line multiplexers, we are more likely to view it as a circuit that selects
one of two 4-bit sets of data lines. As shown in the function table, the unit is enabled when
E = 0. Then, if § = 0, the four A inputs have a path to the four outputs. If, by contrast, § = 1,
the four B inputs are applied to the outputs. The outputs have all 0’s when £ = 1, regardless of
the value of S.

Boolean Function implementation

In Section 4.9, it was shown that a decoder can be used to implement Boolean functions by em-
ploying external OR gates. An examination of the logic diagram of a multiplexer reveals that
it is essentially a decoder that includes the OR gate within the unit. The minterms of a func-
tion are generated in a multiplexer by the circuit associated with the selection inputs. The in-
dividual minterms can be selected by the data inputs, thereby providing a method of
implementing a Boolean function of n variables with a multiplexer that has n selection inputs
and 2" data inputs, one for each minterm.

We will now show a more efficient method for