
Chapter 4

Combinational Logic

4 .1 INTRODUCTION

Logic circ uits for digi tal sys tems may becombinational or sequential. A combinational circui t
consists of logic ga tes whose outputs at any time are determined from only the presen t cornbi­
nation of inputs. A combinational ci rcuit performs an operation that can be spec ified logically
by a set of Boolean functions. In contrast, sequential circuits employ storage elements in addi ­
tion 10 logic gates. Their outputs are a function of the inputs and the stale of the storage elements.
Because the state of the storage elements is a function of pre vious inputs. the outputs of a se ­
quential circuit depend not only on present values of inputs. bUI also on past inputs. and the cir­
cuit beh avior must be specified by a time seq uence of inputs and interna l slates , Sequ ential
circuits are the building blocks of digital systems and are d iscussed in Chapters 5, 8. and 9.

4 .2 COMB INATIONAL CIRCU ITS

A combinational ci rcuit consists of input variables , logic gales, and output variables. Combina­
tionallogic gates react to the values of the signals at their inputs and produ ce the value of the out­
put signal, transfonning binary inform ation from the given input da ta to a requ ired output data.
A block diag ram of a combinational circuit is shown in Fig. 4.1. The 11 input binary variables
come from an ex ternal so urce; the III output variables are produced by the internal combinational
logic circuit and go to an external destination. Each input and OUiPUI variable exists physically
as an analog signal whose values are interpreted to be a binary signal that represents logic I and
logic O. (Note: Logic simulators show only D's and l 's, not the ac tual analog signals.) In many
app lications. the source and destination are storage registers. If the regis ters are included with the
co mbinational gates, then the total circu it must be conside red to bea sequential circuit.
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Combinalional
circuit

FI(;URE 4.1
Bloc:k diagram of combinational circuit

For n input variables. there are r poss ible binary input co mbinations. Por each possible input
co mbina tion . the re is one possible output value. Th us, a co mbinationa l c ircuit can be pectfled
with a truth tab le that Ii ...t" the o utput va lues for each com bination of input va riabl e A com-
bina tion al ci rcuit a lso can be described by m Boolean functi on s. one for each output ..-ariable .
Eac h o utput functi on is ex presse d in terms of the " inpul varia ble ....

In Ch apter I. we learned a bout binary num be rs and binary cod es thai represe nt discrete
q uantities of informa tion. The binary ..-ariables are rep resented ph ysicall y by elect ric ..-oh ages
or so me othe r type of signal. The slgnals can be ma nipula ted in d igital logic gates 10 perform
req uired funcnon s. In Ch apter 2, we introd uced Boo lean a lgebra a" a way 10 ex pre s... logic
funct ion s algebraica lly. In Chapter 3. we learned how to simplify Boo lean functions to ach ie ..-e
econo mica l (s impler) ga te Imple ment an on s. The purpo~ of the c urrent chapter is to use the
know ledge acqui red in previou s cha pters 10 formulate sys tematic analysis and de sig n proce ­
du res for combinational c ircuits. The so lutio n of so me typi ca l exa mples ..viii pro vide a usefu l
ca talog of ele mentary funct ions tha t are import ant for the understand ing of d ig ital syste ms.
We' ll addre ss three tasks: (1) Ana lyze the behav ior of a g iven logic ci rcuit. (2) synthesize a ci r­
cui t that wi ll have a g iven beha vior. and (3) write II DL model.. fo r some co mmon ci rcuit s.

There are several co mbinat iona l c ircuits that arc e mployed ex tensive ly in the de sign of dig­
ital systems. These circ uits are a..-ailable in integra ted circ uits and are classified a.. standard com­
ponents. They pe rfo rm specific di gital functi on s commonly needed in the design of d igita l
sys tems . In thi .. chapter. we introduce the mos t important ..tandard co mbin ational ci rcu its. suc h
as adde rs. subtrectors. comparators. decoders. encoders. and multip lexers. These co mponents are
ava ilable in integrat ed ci rcu its a.. mediu m-scale integrat ion ( ~ISI) ci rcu itv. Tbey arc also used
as standard cells in co mplex wry 13J1!e -<;Cale integrated IVLS I) circuits such a" application­
speci fic integrated c ircuits (AS IC,,). The standard ce ll funct ion s are interconnected wi thin the
VLS I c ircuit in the same way that the)' are used in mul tip le-Ie .\151desig n.

4 . 3 ANALYSIS PROCEDUR E

The ana lysis of a co mbinationa l ci rcuit requires that we dete rmine the fu ncti on that the circ uit
imp lement s. Th is task starts with a given logic diagram 0100 culmi nates with a set o f Boo lean
func tions a truth table . o r, poss ibly. an explanatio n of the ci rcu it ope ration. l f the logic d iagram
10 be analyzed is accompan ied by a function name or an ex planatio n of what it h.assu med to
accompli sh. then the a naly st.. prob lem red uces to a veri fic ation of the sta ted functi on . The
analys is can he performed man ually by findi ng the Boolean funct ions or truth table o r by using
a computer simulation program .
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The first step in the analy sis is to make sure that the given circuit is combinational and not
sequential. The diagram of a combinational circuit bas logic gates with no feedback paths or
memory elements. A feedback path is a connection from the output of one gate to the input of
a second gate that forms pan of the input to the first gate. Feedback paths in a digital circ uit de­
fine a sequential ci rcuit and must be analyzed according to procedures outlined in Ch apter 9.

Once the logic diagra m is verified co be that of a co mbinational circuit. o ne can proceed to
obtain the output Boolean functions or the truth tab le. If the funct ion of the circui t is under in­
vestigation. then it is necessary to interpre t the ope ration of the circuit from lhe derived Boolean
functions or truth table. Th e success of such an investigation is enhanced if one has previous
experience and familiarity with a wide varie ty of digital ci rcuits.

To obtain the output Boolean funct ions from a logic diagram. we proceed as follows:

1. Label all gate outputs that area function of inpu t variables with arbitrary symbols-but
with meaningful names. Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled gates with
other arb itrary symbo ls. Find the Boolean funct ions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circ uit areobtained .

4. By repe aled substitution of previously defined functions. obtain the output Boolean func­
tions in term s of inp ut variables.

The analysis of the combinational circuit of Fig. 4.2 illu strates the proposed procedure. We
note tha t the circuit has three binary inputs- A. B. and C-and two binary outpUls-F\ and F2.

~ =:l]~~2_----------------h:;')-__F,

T,

T,A----'-,.-
B f-'-'-- - - - - - --,
c - -<::,-""

A - -[;;;;,

B--=.../

A - -r- ,
c --1~')-;::::::;!i!!>~---------- F,

B -r;;;<;\
C - ...........;'"

FIGURE 4 .2
l o g ic diagram for ana lysis example
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The outputs of various ga tes are labeled with interm edi ate symbols . The o utputs of ga tes that
are a function only of input varia bles are T1 and T'!. Output F,!ca n easily be de rived from the
input variables . The Boo lean funct ion s for these three outputs are

F,! = AB + AC + BC

TJ =A +B + C

T,! = A BC

Next . we co nside r ou tputs of ga tes that are a function of al ready defined symbo ls:

T~ = FiT,
Fj =T3 + T'!

To obtain FI as a function of A. B. and C. we form a series of sub..titutions as follow ..:

F 1 = T J, + 7 ,! "" FiT l + ABC = (A R + AC + HC )' (A + B + C ) + AHC

~ (A' + 8 ' )(,1' + C')( 8 ' + C' )( A + 8 + C ) + ABC

= (A' + B'C' )(AB' + AC' + BC' + B'C) + ABC

= A'R e ' + A'B'C + AB'C' + ABC

If we want to pur sue the investigation and determ ine the info rmation transfo rmation task
achieved by th is circ uit. we can draw the circ uit fro m the derived Boolean ex press ions and try
to recognize a fam iliar operation. The: Boo lean funct ions for Fl and F] implement a circuit d is­
cussed in Sec tion ~.5 . Merel y find ing a Boolean representat ion of a circuit doe sn' t prov ide in­
sight into its be havior, but in this example we "ill observe that the Bool ean equ ations and tru th
tab le for F1 and F,! matc h those describing the functi onalit y of " hat we call a full adder .

The derivation of the truth table fo r a circuit is a straightforward process once the ou tpu t
Boolean func tio ns are known . To obtain the truth table d irectly from the logic d iagram with ­
o ut goin g through the derivations of the Boo lean func tions. we proceed as follows :

1. De termine the number of input "m abies in the c ircu it. For " inpu ts. form the 2" possible
input co mbinations and list the binary numbers from 0 to 2" - I in a table .

2. Labe l the o utputs of selected gale!' with arbitrary symbols.

3. Obtai n the truth table for the ou tputs of those ga'e~ which are a function of the inpu t
varia bles only.

4 . Proceed to obtain the truth table for the outputs of those gates whic h are a func tion of pre­
vio usly defined values unt il the co lumns for all outputs are de term ined ,

Th is process is illustrated with the ci rcu it o f Fig. 4 .2. In Tab le 4,1. we fonn the eight posst­
ble co mbinatio ns for the three inpu t variables. The tru th table for F2is determin ed directl y from
the values of A. B. and C. with F2equal to I for any co mbination tha t has two or three inpu ts
equa l to I . The truth table for f' ~ is the compleme nt of that o f f 2.The tru th tables for T1and 72
are the O R and AND funct ion .. o f the input variables. respectively,The values for T}are deri ved
from 71 and F i : 7.1 is eq ual to I when both T1and F i arc eq ual to I. and T3 is equ al to 0 oIh...'T ·

wise . Finally. F, is equ al 10 I for those combination.. in which either T2o r T3or both are eq ual
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Table 4.1
Truth Table for the l.ogic Diagram of Fig. 4.1

A • c I F, F, T, T, T, F,

0 0 0 0 I 0 0 0 0

0 0 I 0 I I 0 I I

0 I 0 0 I I 0 I I

0 I I I 0 I 0 0 0

I 0 0 0 I I 0 I I

I 0 I I 0 I 0 0 0

I I 0 I 0 I 0 0 0

I I I I 0 I I 0 I

to I . Inspection of the truth table combinations for A. B, C. Fl. and F2shows that it is identical
10 the truth table of the full adder given in Section 4.5 for .r, y. z, S. and C. respectively.

Another way of analyzing a combinat ional circuit is by means of logic simulation. This is
not practical, however, because the number of input patterns that might be needed to generate
meaningful outputs could bevery large. But simulation has a very practica l application in ver­
ifying thai the functionality of a circuit actually matches its specification. In Section 4.12. we
demonstrate the logic simulation and verification of the circuit of Fig. 4.2, using Verilog HDL.

4 .4 DESIGN PROCEDURE

The design of combinational circuits starts from the specification of the design objective and
culminates in a logic circuit diagram or a set of Boolean functions from which the logic dia­
gram can be obtained. The procedure involves the following steps:

I. From the specifications of the circuit. determine the required number of inputs and outputs
and assign a symbol to each.

2. Derive the truth table that defines the required relationship between inputs and outputs.

3. Obtain the simplified Boolean functions foreach output as a function of the input variables.

.s. Draw the logicdiagramand verifythe correctness of the design (manually or by simulation).

A truth table for a combinational circui t consists of input columns and output co lumns. The
input columns are obtained from the 2" binary numbers for the n input variables. The binary
values for the outputs are determined from the stated specifications. The output functions spec­
ified in the truth table give the exact definition of the combinational circuit It is important that
the verbal specification s be interpreted correctly in the truth table. as they are often incom­
plete, and any wrong interpretation may result in an incorrect truth table.

The output binary functions listed in the truth table are simplified by any available method,
such as algebraic manipulation. the map method, or a computer-based simplification program.
Frequently, there is a variety of simplified expressions from which 10choose. In a particular
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application. certain criteria will serve as a guide in rte process of c hoosi ng an irnple rnenration ,
A practical de sign must con sider such con straints a~ the number of gale ". number of inputs to
a gate. propagation time of the signal throug h the gales. number of interconnections. limitations
of the dri ving capability of each ga te {i.e .. the number of 1!ates 10 which the o utput of the cir­
cuit may be co nnected ). and variousother criteria that must be taken into co nsiderat ion when
lksigning integrated circuits. Sirce~ importance of each eunstrailll h dicta ted by the particular
application. it is difficult to make a general state ment about "h.at constitutes an acceptable im­
plemenration. In most cases. the simplification beg ins by lo3tisfying an ele mental)"objective.
such as producing the simplified Boolean functions in a standard form . Then the simplification
proceeds with further steps 10 meet other performance criteria.

Code Conyerslon Example

The avai lability of a large varie ty of codes for the same discrete elements of informalion re­
sults in the use of differen t code s by different digital sys tems. II is sometimes necessary to usc
the output of one system as the input 10 another. A co nversio n ci rcuit must be inserted betwee n
the two syste ms if each uses d ifferent codes for the same infor mation . Thu s. a code converter
is a ci rcuit that makes the two systems com patible even though each uses a different binary code .

To convert from binary code A to binary code R. the input lines mUSIsupply the hit combi­
nat ion of elements as spec ified by code Aand the o utpurhne.. must generate the corre sponding
bit combination of code B. A combinationa l circu it performs thi.. transformat ion by mean s of
logic gales . The de sign procedure will be illustrated b)' an example tha t converts binary coded
decimal (BCD) 10 the exces s-J code for the dec imal Ji gi('\,.

The bit combinnrionv assigned to the BCD and excess-J codes are fisted in Table 1.5 (Section
1.7). Since each code uses four bits to repre sent a dec imal digit. there must be fou r input vari ­
ables and four output variable s. We designate the four input binary vari ables by tlk: symbol s
A. 8 . C. and D. and the fou r ou tput variab les by ~I' . X. .". and :. The truth table relating the input
and output variables i" sho wn in Table 4.2. The llil combination.. for the inpu t.. a nd their

Table 4 .2
Truth Tob~ for Codt -Convenion bomplt

Input BCD Output b ee n ·) Code

A • C D w K y z

II II o o II n 1 1
II o o 1 II 1 o o
o o 1 o 0 1 o 1
0 o 1 1 0 1 1 0
0 1 II 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 o 0 1
0 1 1 1 1 " 1 0
1 0 u o 1 o 1 1
1 o o 1 1 1 o 0
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corresponding outputs are obtained d irectly from Section 1.7. Note tha t four binary variables
may have 16 bit combinations. but only 10 are listed in 1M truth tab le. The six bit combina­
tions not listed for the input variables are don 't-care combinations . These values have no mean­
ing in BCD and we assume that they will never occur. Therefore . we are at liberty to assign to
1M output variables either a , or a 0, whiche ver gives a simpler circuit.

The maps in Fig. 4.3 are plotted to obtai n simplified Boo lean functions for the outputs.
Each one of the four maps represents one of the four outputs o f 1M c ircuit as a function of
the fou r input vari ables . The t's marked inside the squaresare obtained from the minterms
that make the output equal to I . The J' s are ob tained from the truth table by goi ng over 1M
output columns one at a time. For example. the column under output z has five t's: therefore,
the map for z has five t's. eac h being in a square correspond ing to the mlnterm that makes
c equal to I . Th e six don 'Hare mintenns 10 through 15 are marked with an X. One possi ­
ble way to simpli fy the functions into sum-of-products fonn is listed under the map of each
variable. (See Chapter 3.)
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A two-le vellogic diagram may be obtained d irectly from me Boo lean expre ssions derived from
the maps. There are various other possibillues for a log ic diagram that impleme nts this ci rcuit.
The e xpressions obtained in Fig. 4.3 may be manipulated alge braically for the purpose of using
co mmo n gates for two or more outputs. Th is manipulatlon . shown ne xt. iltusumc s the fle xibility
obtained with multi ple-output systems when impleme nted with three or more levels of gates:

:. = D'

Y =CD + C D' = CD + (C + D)'

.r = H'C + H' D + He'n' = B' (C + V ) + BC'V '

= B' (C + D ) + B(C + D )'

I" = A + Be + 8 0 = A + H(C + D )

The logic d iagram that implements these ex pressio ns is shown in Fig . 4.4 . Note thai the OR
gate who se o utput ls C + D has been used to implemen t part ia lly each or three o utputs.

No t counting input inverters . the implementa tio n in su m-of-prod uc ts 1'01'111 requires seven
AN D gates and three O R gates, The impleme ntation of Fig . 4 .4 req uire!'. four AND gates. four
O R gates. and one inverte r. If only the normal inputs are available. the first implementation will
require invert ers for variab les B. C. and D. an d the seco nd imple me ntatio n will requ ire in­
ve rters for variab le!'. B and D. Th us. the three-lev el logic circuit requ ires fewer gales. all o f
which in tum req uire no more tha n two inputs.

D'

CD~ =:;:::t:::f-)E'--------l-")----- Y

'>-- ..---41>0--; Ie +OJ'
~--L_/

C +lJ

B -,-- - - - 1---- - -1
)-- - ,

fiGURE 4 .4
logic diagram for BCD-to-excess-3 code co nvert er
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4 .5 BINARY ADDER-5UBTRACTOR

Digital computers perform a variety of information-processing tasks. Among the functions en ­
countered are the various ari thmetic ope ratio ns. The most basic arithmetic operation is the ad­
dition of two binary digits. This simple addition consists of four possible e lementary operations:
o + 0 = 0, 0 + 1 = I. 1 + 0 = I, and I + I = 10. The first three operat ions produce a
sum of one digit, but when both augend and addend bits are eq ual 10 I . the binary sum con­
sists of two dig its. The higher significant bit of this result is called a carry, When the augend
and addend numbers contain more significant digits.the carry obtained from the addition of two
bits is added to the next higher order pair of significant bits . A combinational circuit thai per­
forms the addition of two bits is called a halfadder, One that performs the add ition of three
bits (two significant bits and a previous carry) is al llll adder. The names of the circuits stern

from the fact that two half adders can be employed to implement a full adder.
A binary adder- subtracter is a combinat ional ci rcuit that performs the arithmetic operations

of addition and subtraction with binary numbers. We will develop this circuit by means of a hi­
erarc hical design. The half adder design is carried OUI first, from which we develop the full
adder. Con necting n full adders in cascade prod uces a binary adder for two c-bit numbers. The
subtraction circuit is included in a complementing circuit.

Half Adder

From the vernal explanation of a half adder. we find that this circuit needs IWO binary inputs
and two binary outputs. The input variables designate the augend and addend bits; the output
variables produce the sum and carry. We assign symbols .r and y to the two inputs and S (for
sum) and C (for carry) to the outputs. The truth table for the half adder is listed in Table 4.3.
The C output is I only when both inputs are 1. The S output represe nts the least significant bit
of the sum.

The simplified Boolean functions for the IWO outputs can beobtained direct ly from the truth
table . The simplified sum-of-products expressions are

S = x 'y + xy'

C = x )'

The logic diagram of the half adder implemented in sum of products is shown in Fig. 4.5 (a),
It can be also implemented with an exclusive-OR and an AND gate as shown in Fig. 45(b).
This form is used to show that IWO half adders can be used to construct a full adder.

Table 4 .3
Half Adder

x y C S

0 0 0 0
0 I 0 I
I 0 0 I
I I I 0
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Full Adder

~-s

;=:::C:))---- - --- c

fa l S = .\,,\., ....t ' .1

c = ,\',\

F1C;URE 4 .5
ImplementatIon of half adder

"'~" " " . ' . S
I" .......'.
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(b) S · .f e \·
C " .t .\· .

A full adder is a combinationalcircuit that forms the arithmetic sum of three bits. Itconsists of three
inputs and two outputs. Two of the input variables, denoted byr and y, represent the two signifi­
cant b il.~ to be added. The third input. :. represents the cany from the previous lower significant
position.Two outputs are necessary because thearithmetic sum of three binary digits ranges in value
from 0 to 3. and binary 2 or 3 needs two digit...The two outputs are designated by the symbols S
for sum and C for cany. Thebinary variable S gives the value of the least significant bit of the sum.
The binary variable C gives the output cany.The truth table of the full adder is listed in Table 4.4.
The eight rows under the input variables designate all possible combinations of the three vari­
ables. The output variables arc determined from the arithmetic sum of the input bits. When :111
input bits are 0, the output i..O.The S output is equal to I when only one input is equal to I or when
all three inputs are equal 10 I. The C OUiPUI has a carry of I if two or three inputs are equal to I.

The input and output bits of the combinational circuit have different interpretations at vur­
iou..stages of the prohlem. On the one hand. physically. the binary ..ignals ofthe inputs are con­
sidered binary digits to be added arithmetically to form a two-digit sum at the output. On the
other hand. the same binary values are considered as variables of Boolean functions when ex­
pressed ill the truth table or when the circuit is implemented with logic gales. The map~ for the
ourput-,of the full adder are shown in Fig. 4.6. The simplified expressions arc

Tabl e 4.4
Full Adder

x r , c s

0 0 0 0 0
0 0 I 0 I
0 I 0 0 I
0 I I I 0
1 0 0 0 I
1 0 I I 0
I 1 0 I 0
I 1 1 1 1
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FIGURE 4 .6
Maps fo r full adder

s = x 'y 'Z + x'YZ' + xy'Z' + .ryz

C = xy + xz + }'Z

The logic diagram for the full adder implemented in sum-of-products form is shown in Fig. 4.7.
It can also beimplemented with two half adders and one OR gate. as shown in Fig.4.8.TheS outpUt
from the second half adder is the exclusive-OR of z and the output of the first half adde r.
giving

S - zEll (x EIly)
= z'(xy' + x'y) + z(xy' + x'y}'

= z'(xy' + x 'y ) + z(xy + x'y')

= xy' z' + x 'yZ' + xyz + x 'y ' Z

The carry output is

c = z(x)" + x 'y ) + xy = xy'z + x'vz + xy

' :::f-L~y
' ---t_ -'
FIGURE 4 .7
Implementation of full adder in sum-of- products form
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x 8 y

FIGURE 4.8
Implementation of full adder wi th two half add ers and an OR gate

Bin a ry Adde r

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can
beconstructed with full adders connected in cascade. with the output carry from each full adder
connected to the input carry of the next full adder in thechain. Figure 4.9 shows the interconnection
of four full-adder (FA) circuits to provide a four-bit binary ripple carry adder. The augend bits of
A and the addend bits of B aredesignated by subscript numbers from right to left with subscript
odenoting the least signif icant bit. The carries are connected in a chain through the full adders.
The input carry to the adder is Co. and it ripples through the full adders to the output carry C4 ­

The S outputs generate the required sum bits .An II-bit adder requires n full adders. with each out­
put carry connectedto the input carryof the next higher order full adder.

To demonstrate with a speci fic example. consider the two binary numbers A = 101 1 and
8 = 00 11. Their sum S = 1110 is formed with the fou r-bit adder as follows:

Subscript I: 3 2 0

Input carry 0 1 0 c;
Augend 1 0 1 A;
Addend 0 0 1 B;

Sum 1 1 0 s,
Output carry 0 0 1 Ct+l

The bits are added with full adders . starti ng from the least significant position (subscript 0). 10

fonn the sum bit and carry bit. The input carry Co in the least significant posi tion must be O.
The value of C;-+l in a given significant position is the output cart)' of the full adder. Th is value
is transferred into the input carry of the full adde r that adds the bits one higher significant p0­

sition to the left. The sum bits are thus generated start ing from the rightmost position and are
available as soo n as the corresponding previous carry bit is generated. All the carries must be
generated for the correc t sum bits to appear at the outputs.

The four-bit adder is a typical example of a standard component. It can be used in many ap­
plications involving arithm etic operations. Observe that the design of this circuit by the clas­
sical method would require a truth table with 29 = 5 12 entries. since there are nine inputs to
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FIG.URE 4.9
Four-bit adder
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the ci rcuit. By using an iterative method of cascading a standard function, it is possibl e to ob­
tain a simple and straightforward implementation.

Carry Propagation

The addition of two binary numbers in parallel implie s that all the bits of the augend and addend
are available for computation at the same time. As in any combinat ional circuit, the signal must
propagate through the gates before the correct out put sum is avai lable in the output terminal s. The
total propagation time is equal to the propag ation delay of a typical gate. times the number of gate
levels in the circuit. The longes t propagation delay time in an adder is the time it takes the carry
to propagate throu gh the full adders. Since each bit of the sum output depends on the value of the
inpu t carry. the value of Sj at any given stage in the adder will be in its steady-state final value
only afte r the input carry to that stage has been propagated . In this regard . consider ou tput S3in
Fig. 4.9. Inputs A 3 and BJ are available as soonas input signals are applied to the adder. How­
ever, inpu t carry C3 does no( settle to its final value until C2 is available from the previous stage.
Similarly, C2has to wait for C1and so on down 10 Co- Thus, only after the carry propa gates and
ripples through all stages will the last output 5J and carry Col settle to thei r final correct value .

The num ber of gate levels for the carry propagation can be found from the circuit of the full
adde r. The circuit is redraw n with different labe ls in Fig. 4.10 for convenience . The input and
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8 ,
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./

l ) G ,
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c,
f lG.Un 4.1 0
Full adder with P and G shown
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o utput variables use the ~uhscript i to denote a typical stage o f the adder . The signals at P; and
G, settle to their steady -state values after they propagate through their res pec tive gales, T hese
two signets are co mmo n to all full adde r.-. and depend only onthe input augend and addend hils.
The signal from the input carry Cj 10 the out put carry C;- I pro pagat es through an AND gate
and an OR gate. which co n..tirutc two gale levels. If there are fou r full adders in the adde r. the
o utpu t carry C4 wou ld ha ve 2 x 4 =- 8 gale levels from Co to C-4' For an u-bi r adde r. there are
211 gate levels for the carry to propagate from input to output.

The ca rry propagation lime is an import ant attri bute of the adde r because it limits the speed
with wh ich two numbers are added . Although the adde r-c-o r. for thaI matt er . any combine­
tio na! circuit-s-will always have some value at its ourpot rerm inals. the outputs will not be cor­
rec t un less the signals arc give n e nough time to propagate through the gate s connec ted from
the inp uts 10 the ou tputs. Since all other ari thmet ic o pera tions are imple men ted by succes si ve
addi tion s. the time co nsumed durin g the addi tion proce ss is critica l. An obv ious so lution for
reducing the carry propagat ion delay time is to employ fas ter gate s with reduced delays. How­
ever, phy sical c ircu its have u lim it to thei r capabi lity. Another solution is to increase the co m­
plex ity o f the equipment in suc h a way that the carry delay time is reduced. Th ere arc severa l
techniques for reducin g the carry prop agation time in a paral lel adde r. Th e most widely used
technique employs the principle o f carry tookaheaa IORie.

Consider the circui t of the full adder shown in Fig. 4.10. If we define 1'01.'0 new binary variables

P; = A, @8,

Gj = A;8;

the o utput sum and carry ca n respecuvety be e xpresse d a~

S j =P; EB C;

Cj + 1 = G; + P,C ,

G, i.. ca lled a carry 1:t.'tlerare. and it produ ces a carry of I when bot h A, and 8, are J. regard­
Ie~s o f the input carT)' C,. ~ is ca lled a wrl)' proP<'1:l11<,. because it determines whether a carry
into ..rage i will propagat e into stage i .... I (i.e .. whether an a....e rt ion of Ci will propagate to

an assertion of Ci-tl.
We no w write the Boolea n functio ns for the carr)' outputs o f each stage and substitu te the

valu e of eac h C; from the pre viou .. eq uatio ns:

cu = input carry

C] = Gn + PoCu

C~ = GI + P tC ] = (il + PI(Go + PoCo) = G I + P IGO+ PtPoCo

C~ = G~ + P~C~ =- G~ + P2G ] + p~p]Go =- P~P1Prt:O

Since the Boolean function for each out put carry is expressed in sum-of-prodocts form. eac h func­
tion can be implemented with one level of AN D gates followed by an OR gate (or by a two- level
NAND).1lle three Boolean functions for C t. C2• and C) are implemented in the carry loo kahead
gene ra tor shown in Fig. 4 .11. Nule that thi.. circuit can add in less time because CJ doe s not have
to wail for C2 and C. to propagate: in fac t. C" is propagated at tbc same time as C t and C2.Thi s
ga in in speed o f operation is achieved at tbe expense of add itional comple xity (hardware).
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Logic diagram of carry looka head generator
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The construction of a four-bit adder with a carry lookahead scheme is shown in Fig. 4.12.
Each sum output requires two exclusive-OR gales . The output of the first exclusive-OR gale
generales the 11 variable, and the AND gate generates the G1variable. The carries are propa­
gated through the carry lookahead generator (similar 10 thai in Fig. 4. 11) and applied as inputs
to the second exclusive-OR gate. All output carrie s are generated after a delay through two
levels of gates. Thus, outputs 5 1through 53 have equal propagation delay times. The two-level
circuit for the output carry C4 is not shown. This circuit can easily be derived by the equation­
substitution method.

Binary Subtractor

The subtraction of unsigned binary numbers can bedone most conveniently by means of com­
plements, as discussed in Section 1.5. Remember that the subtraction A - B can be done by
taking the 2's complement of B and adding it to A. The 2's complement can be obtained by tak­
ing the I 's complement and adding 1 to the least significant pair of bits. The I 's complement
can be implemented with inverters. and a I can beadded to the sum through the input carry.
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FIGURE 4 .12
rcur-bit adder wit h ca rry lookahead

The c ircuit for subtracting A - R co nsists of an adde r with inverte rs placed be tween eac h
data input B and the corresponding input of the ful l adde r. The input carry Co must be equ al to
I when subtraction is pe rfo rmed . The operat ion thus performed becom es A. plus the ) 's co m­
plement of 8 . plus 1. This is equal to A plus the 2's complement of B. For unsigned numbers.
that g ives A - B i f A ~ 8 or the 2' s complement of (8 - A ) if A -c B. For signed numbers .
the resul t is A - 8 , prov ided thai there is no ove rflow, (See Section 1.6.)

The addition and subtraction operations can becombined into one circuit with one common
binary adder by including an exclusive-Olegate with each full adder.A four-bit adder-s ubuaetor
c ircuit is shown in Fig. ~ . 13 . The mode input /If controls the operation. When M = O. the ci r­
cuit is an adder. and \\ hen .\f = I. the circuit becomes a subtracter. Each exclusive-OR gate
receives inputM and one of lhe inputs of B. When M = O. we have B Ell O = B. The full adders
receive the value of B. (he inptn carry is O. and Ihe circu it perform s A plus B. When M = I.
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FIGURE 4 .13
Four-bit adder-subtractor

we have B EB 1 = B ' and Co = 1. The B inputs are all complemented and a 1 is added through
the input carry. The circuit performs the operation A plus the 2' s complement of B. (The ex­
clusive-OR with output V is for detecting an overflow)

It is worth noting that binary numbers in the signed-complement system are added and sub­
tracted by the same basic addition and subtraction rules as are unsigned numbers. Therefore.
computers need only one common hardware circuit to handle both types of arithmetic. The
user or programmer must interpret the results of such addit ion or subtraction differently. de­
pending on whether it is assumed that the numbers are signed or unsigned.

Overflow

When two numbers with n digits each are added and the sum is a number occupying n + I dig­
its. we say that an overflow occurred. This is true for binary or decimal numbers. signed or un­
signed. When the addition is performed with paper and pencil. an overflow is not a problem.
since there is no limit by the width of the page to write down the sum. Overflow is a problem
in digital computers because the number of bits that hold the number is finite and a result that
contains n + I bits cannot be accommodated by an a-bit word. For this reason. many computers
detect the occurrence of an overflow. and when it occurs, a corresponding flip-flop is set that
can then be checked by the user.

The detection of an overflow after the addition of two binary numbers depends on whether the
numbers are considered to be signed or unsigned. When two unsigned numbers are added. an
overflow is detected from the end carry out of the most significant position. In the case of signed
numbers. two details are important: the leftmost bit always represents the sign. and negative
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numbe rs are in Z's-complement form. When two signed numbe rs are added. the sign bit is
treated as part of the number and the end carry does nOI indicate an overflow.

An overflow cannot occur after an addition if one number i!'o positive and the other is neg­
ative. since adding a positive number to a negative number produces a result whose magnitude
is smaller than the larger of the two original numbers. An overflow may occur if the two num­
bers added are both positive or both negative. To see how this can happen. consider the following
example : Two signed binary numbers, + 70 and + 80. are stored in two eight-bit registe rs. The
range of numbers that each register can acco mmodate is from binary + 127 to binary - 128.
Since the sum of the two numbers is +150. it exceed!'. the capacity of an eight-bit register. This
is also true for - 70 and - 80. The two additions in binary arc shown next, together with the
last two carries:

carries: 0 1 carries: 0
+70 0 1000110 - 70 1 0 111010

+ 80 o ior oooo - 80 1 ouoooo
+ 150 1 00 10 110 - 150 a 1101010

Note that the eight-bit result that should have been positive has a negative sign bit (i.c.• the
8-th bit) and the eight-bit result that should have been negative has a positive sign bit. If, how­
eve r, the carry out of the sign bit position is taken as the sign hit of the result. then me nine-bit
answer so obtained will be correct. But since the answer cannot be accom modated within eight
bits. we say thai an overflow has occ urred.

An ove rflow condition can bedetected by observing the carry into the sign bit position and
the carry out of the sign bit position. If these two carries arc not equal. an overflow has flCCUITCt1.

This is indicated in the examples in which the two carries are explicitly shown. If the two car­
ries are applied to an exclusive-OR gate. an overflow is detected when the output of the gate
is equal to I. For this method to work correctly. the 2's complement of a negative number must
be computed by taking the I 's comp lement and adding 1. This takes care of the condition when
the maximum negative number is complemented.

The binary adder-subtracter circuit with outputs C and V is shown in Fig. 4. 13. If the two
binary numbers are considered to be unsigned. then the C bit de tects a carry after addition or
a borrow after subtraction. If the numbers are considered to be signed, men the V bit de tects
an overflow. If V :::: 0 after an add ition or subtraction. then no overflow occurred and the n­
bit result is correct. If V :::: I. men the result of the operation conta ins 1/ + I bits, but only the
rightmost n bits of the number fit in the space available. so an ove rflow has occurred. The
(n + 1jth bit is the actual sign and has been shifted out of posi tion.

4 .6 DECIMAL ADD ER

Computers or calculators that perform arithmetic ope rations directly in the decimal number sys­
tem represent decimal numbers in binary coded form An adder for such a com puter must em­
ploy arithmetic circuits that accept ceded decima l numbers and present results in the same code.
For binary addition. it is sufficient 10 consider a pair of significant bits together with a previous
carry. A decimal adder requires a minimum (If nine inputs and five outputs. since four bits are
required to code each deci mal digit and the circuit must have an input and output carry. There



140 Chapter 4 Combina tional Logic

is a wide variety of possible decimal adder circuits, depending upon the code used to represent
the decimal digits. Here we examine a decimal adder for the BCD code. (See Section 1.7.)

BCD Adder

Consider the arithm etic addition of two dec imal dig its in BCD, together with an input carry from
a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than
9 + 9 + 1 = 19, the I in the sum bein g an input carry. Suppose we apply two BCD digits to
a four-bit binary adder. The adder will form the sum in binary and produce a resu lt tha t range s
fro m 0 th rou gh 19. Th ese binary number s are lis ted in Table 4.5 and are labeled by symbols
K, 2 8, 2 4, 2 2, and 2 ]. K is the carry, and the subscrip ts under the letter 2 rep resent the weights
8, 4 , 2, and I that can be assig ned to the four bits in the BCD code. The columns under the bi­
nary sum list the binary value that appears in the output s of the four-bit bin ary adder. The out­
put sum of two deci mal digits must be represented in BCD and should appe ar in the fonn listed
in the columns under "BC D Sum." The problem is to find a rule by which the binary sum is
converted to the correct BCD dig it rep rese ntatio n of the number in the BCD sum.

In examining the co ntents of the ta ble, it becomes apparent that when the binary sum is
equal to or less than 1001. the corresponding BCD number is identical. and therefore no conversion
is needed . When the binary sum is greater than 1001, we obtain an inva lid BCD represe ntation.

Table 4 .5
Deriva tion of BCDAdder

Binary Sum BCD Sum Dec imal

• Z. Z. Z, Z, C So S, S, S,

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 I I
0 0 0 I 0 0 0 0 I 0 2
0 0 0 I I 0 0 0 I I 3
0 0 I 0 0 0 0 I 0 0 4

0 0 I 0 I 0 0 I 0 I 5
0 0 I I 0 0 0 I I 0 e
0 0 I I I 0 0 I I I 7
0 I 0 0 0 0 I 0 0 0 8
0 I 0 0 I 0 I 0 0 I 9

0 I 0 I 0 0 0 0 0 10
0 I 0 I I 0 0 0 I II
0 I I 0 0 0 0 I 0 12
0 I I 0 I 0 0 I I 13
0 I I I 0 0 I 0 0 14
0 I I I I 0 I 0 I 15
I 0 0 0 0 0 I I 0 I.
I 0 0 0 I 0 I I I 17
1 0 0 I 0 I 0 0 0 18
1 0 0 I 1 I 0 0 I 19
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The addition of hinary b lO\ \0 ) to the binary sc m converts it 10 the correct BCD represema­
lion and also produces an output carry as required.

The logic circ uit that detects the:necessary correction can bede rived from the:entries in the
tab le. II is ob vious that a correct ion i..needed when the hinary ..urn ha.. an output carry K = I .
The other ~i :\ combinations from 1010 thro ugh 11' 1 thai need a correction have a 1 in pos ition
ZlI. To distinguish them from binary 1000 300 100 1. which also have a I in position ZlI.we spec­
ify furth er that ei ther Z4 Of Z2 mu ..t have a I. The co ndi tion for a co rrec tion a nd an ou tput
carry can he ex pressed by the Boolean function

C = K + Z8Z-4 + ZllZ2

When C :: 1. it is necessary 10 add 0 110 10 the binary sum and prov ide an output carry for the
ne xt stage .

A BCD adder\h~ add...two BCD digits and prOO~ a scm digit in BCD is shown in n g. 4..14.
The IWO dec ima l digits.togetha" with the input carry. are first added in !he lop four-bit adde r 10

produce the binary sum. when the outpUI carry is equa t ro O. no thing is add ed to the binary sum.

A ddend Au~cnd

O UIP UI r
un)

Carry
0"' K 4-bi1binary adder

Z. 7..~ Z~ Z,

Carry
in

o - - --r+-1!o

FIGURE 4 .14
81a<kdiagram of a BCD adder
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When it is equal to I. binary 01 10 is added 10 the binary sum through the bot tom four-bit adder.
Theoutput carry ge nerated from the bottom adder can be ignored. since it supp lies information
already avai lable at the ou tput carry terminal. A deci mal parallel adder thai adds n dec imal dig­
its needs n BCD adder stages . The output carry from one stage must be connected 10 the input
carry of the next higher order stage.

4 .7 BI N A RY MULTIPLIER

Multiplication of binary numbers is performed in the same way as multiplication of decimal num ­
bers . The multiplicand is multiplied by each bit of themultiplier. starting from the lea..t sign ifi­
cant bit . Each such multiplication fonns a partial product. Successive parti al products are shifted
one position to the left . The final prod uct is obta ined from the sum of the partial prod ucts.

To see how a binary mul tiplier ca n be impleme nted with a combinational ci rcuit. cons ider
the multiplicat ion of two 2·bit numbers as show n in Fig. 4.15. The mul tiplicand bits are BI and
Bo, the mu ltiplier bits are A I and Ao, and the prod uct is C3C2CICo. The fir st part ial produ ct is
formed by multiplying Billa by Ao. The mul tiplication of two bits such as Ao and Bo produces
a I if both bits are I: otherwise. it produces a O. This is identical to an AND operat ion. There­
fore , the partial product ca n be implemented with AND gates as shown in the diagram . The sec­
ond part ial prod uct is fonned by m ult iplying B1Boby A1 and shifting one posit ion 10 the left.
The two parti al prod uct s are added wi th two half-adder (HA) circuits. Usually, there are more
bits in the partial products and it is necessary to use full adders to produce the sum of the parti al

B, B. A.
B, ..

A, A.
AoB, A,B.

A IB I A 1Bo

C, C, C, C. A,
B, B.

FIGURE 4 .15
Two-bit by two-bit bin ary mu ltiplier
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produ cts. Note that the least sig nific ant bit of the product doe s not have to go through an adde r.
since it is formed by the output o f the first AN D gate.

A co mb inationa l c ircuit bin ary mu ltiplie r with more bits can be co nstruc ted in a similar
fashion . A bit o f the multiplier is ANDed wi th each bit o f the mult iplicand in as man y level s
as the re are bits in the mult ip lier. The binary output in eac h level of AN D gates is added with
the part ia l prod uct o f the pre viou s le vel to form a new part ial produ ct. The las t leve l produces
the prod uct . For J multiplier bits and K multiplican d bits. we need (J X K ) AN D gates and
(J - 1) K-bit adders to prod uce a produ ct of J + K bits.

As a second example. consider a multiplier circuit that multiplies a binary number repre sented
by four bits by a number represented by three bits . Let the multiplicand be represen ted by B3B1Bl Eo
and the multiplier by A2A ]AQ• Since K = 4 and J = 3. we need 12 AND gales and 2 fou r-bit
adders 10 produce a productof seven bits.The logic diagramof the mult iplier is shown in Fig. 4.16.

Ao------ - - - - - - - - - - r -=-; -,,---·..--=---.

s,

f1GUR14 .16
rcur-bn by three-bit binary multiplier

s"

C"
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4 .8 MAGNITUDE COMPARATOR

The comparison of two numbers is an operat ion that determines whether one number is greater
than. less man. or equal to me other number. A magnitude compa rator is a combinational cir­
cuit that compares two numbers A and B and determines their relative magnitudes.The outcome
of the comparison is specified by three binary variables mat indicate whether A > B. A = B.
or A < B.

On the one hand. the circuit for comparing two n-bit numbers has 22n entries in the truth
tab le and becomes too cumbersome. eve n with n = 3. On the other hand. as one may sus­
peer. a comparator circuit possesses a certain amount of regularity. Digital functions that
possess an inherent well-defined regulari ty can usually be des igned by means of an algo­
rithm-a procedure which specifies a finite set of steps that. if followed. give the solution
to a prob lem. We illustrate this method here by deriving an algo rithm for the design of a
four-bit magnitude comparator.

The algorithm is a direct application of the procedure a person uses to compare the relauve
magnitudes of two numbers. Consider two numbers. A and B. with four digits each. Write the
coefficients of the numbers in descending order of significance:

A = A3A2AI Ao

B = B)B2B1Bo

Each subscripted leiter represents one of the digits in the number. The two numbers are equal
if all pairs of significant digits are equal: A) = B3. A2 = B2. Al = BI• and Ao = Bo. When
the numbe rs are binary. the digits are either I or O. and the equality of each pair of bits can be
expressed logically with an exclusive-NOR function as

XI = A;B; + AiB; for i = 0.1 . 2. 3

where x; = I only if the pair of bits in position i are equal (i.e .• if both are I or both are 0).
The equality of the two numbers A and B is displayed in a combinational circuit by an

out put binary variable that we designate by the symbol ( A = B). This binary variable is
equal to I if the input numbers. A and B. are equal. and is equal to 0 otherwi se. For equal­
ity to exist. all Xi variables must be equal to I. a condi tion that dictates an AND operatio n
of all var iables:

( A = B) = X3X2X 1XO

Thebinary' variable (A = B) is equal to I only if all pairs of digits oflhe two numbers are equal.
To determine whether A is greater or less than B. we inspect the relative magnitudes of pairs

of significant digits. starting from the most significant position. If the two digits of a pair are
equal. we compare the next lower significant pair of digits. The comparison continues until a
pair of unequal digits is reached. If the corresponding digit of A is I and that of B is O. we con­
clude that A > B. If the corresponding digit of A is 0 and that of B is I . we have A < B. The
sequential comparison can beexpressed logically by the two Boolean functions

( A > B) = A)B) + x )A2B2 + X)X2AIBi + X)X2X IAoBo

( A < B) = A)B) + X)A2B2 + X)X2AiBj + X3X2X ,AOBo
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The symbols (A > 8 ) and (A < B) are binary OUlpUI variables that are equal 10 I when
A > B and A < B. respectively.

The gate implementation of the three output variables j ust derived is simpler than it seems
because it involves a certain amount of repetition. The unequal outputs can use the same
gates that are needed 10 generate the equal output. The logic diagram of the four-bit magni­
tude comparator is shown in Fig. 4.17. The four x outputs are generated with exciusive·NO R
circuits and are applied to an AND gale to give the output binary variable (A = B). The
other two outputs use the .r variables to generate the Boolean functions listed previously.
This is a multilevel imple mentation and has a regular pattern. The procedu re for obtaining
magnitude comparator ci rcuits for binary numbers with more than four bits is obvious from
this exa mple.

A , ~--f»--r,

8 , -.e.--[»--L~

(A < 8 )

(A > 8 )

L!~=lEG}--------- (A ~ B )

FIGURE 4 .11
Four -bit mag nitude compa rator
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4 . 9 DECODERS

Discrete quanti ties of informa tion are repre sented in digital systems by binary codes. A binary
code of n bits is capable of representing up to 2" distinct elements of coded information. Aduo
oder is a co mbinational circuit tha t converts binary information from" input Hne.. to a maxi ­
mum of 2" unique outpu t linec. If th e ,,-bit coded information ha.. unused co mbi nation... the
decoder ma y ha ve te wer than 2" ou tputs.

The decoders presented here arecal led n-to-m-line decoders , where m :s: 2". Their purpose
i ~ to generate me 2" (or fe.....er) mi nterms of n input variables. The name decoder is abo used
in conj unction with other code converters. such as a BCD-lo-seven-segment decoder.

As an example. consider the three-to-eight-line decoder circuit of Fig. 4.18. The three inputs

are decoded into eight { )(JtPUl~. each represe nting one of the minterms of the three input variables.
The three inverters provide the complement of the inputs, and each one of the e ight AND gates
generates one of the minterms. A part icular applicat ion of this decoder is binary-to-octal

,

"
I

\
r-, J

I
--y

.r-....
'\
J

'\

Do - .t')":'

D J - x ) :

FIGURE 4 .18
'rbree-tc-e lq ht-une decoder
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Tabl e 4 .6
Truth Table of a Three·to-flght·Lfne Decoder

Inputs Outputs
x y z D. D, D, D, D. D, D. D,

0 0 0 I 0 0 0 0 0 0 0
0 0 I 0 I 0 0 0 0 0 0
0 I 0 0 0 I 0 0 0 0 0
0 I I 0 0 0 I 0 0 0 0
I 0 0 0 0 0 0 I 0 0 0
I 0 I 0 0 0 0 0 I 0 0
I I 0 0 0 0 0 0 0 I 0
I I I 0 0 0 0 0 0 0 I

conversion. The input variables represent a binary number. and the outputs represent the eight
dig its of a number in the octal numbe r system. However, a three-to-eight-line decoder can he
used for decoding al/Ythree-bit code to provide eight outputs, one for each element of the code.

The operation of the decoder may be clan lied by the truth table listed in Table 4.6. For each
possible input combinatio n, there are seve n outputs that are equal 10 0 and only one thai is
equal (0 I. The output whose value is equal 10 I represent s the mintenn equ ivalent of the bi­
nary number curre ntly avai lable in the input lines.

Some decoders arc constructed with NAND gates. Since a NAND gate produces the AND op­
erat ion with an inverted output. it becomes more economical to generate the decoder mintcrm s
in their com plemented form. Furthermore. decod ers include one or more enable inputs to con­
trol the circuit operation. A two-to-four-line decoder with an enable input constructed with NAND
gates is shown in Fig. 4.19. The circuit opera tes with complemented outputs and a com plement

D,

E_~')~ -..J

(a) Logic diagram

FIGURE 4.19
'rwc -tc -Ic ur-une decoder with enable inp ut

£ A B D, D, D, D,

I .Y .Y I I I I
0 0 0 0 I I I
0 0 I I 0 I I
U I 0 I I U I
0 I I I I I 0

Ib) TrUlh table
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enabl e input. The decode r is enabled when E is equ al to 0 (i.e.. active-low enable ). As indicated
by the truth table. only one output can be equal to 0 at any given time; all other outputs are equal
10 I .The OUlpUI whose value is equal to 0 represents themintenn selec ted by inputs A and B.The
circuit is disabled when E is equal 10 I. regardless of the values of the other two inputs. When
the circuit is disabled . none of the outputs are equ al 10 0 and none of the rnintcrms are selected .
In general . a decoder may operate with complemented or uncornple mented outputs. The enable
input may be activated with a 0 or with a 1 signal. Some decoders have two or more enab le in­
puts that must satisfy a given logic condition in onle r to enable the circuit.

A decode r with enable input can function as a demultiplexer- acircuit that receives infor­
mation from a single line and directs nrc one of 2" possible outputlines. The selection of a spe­
cifi c output is controlled by the bit combina tion of n selection lines. Th e decoder of Fig. 4 .19
can function as a o ne-to-four-line demultiplexer when E is taken as a data inpu t line and A and
B are taken as the selection input s. The single input variable E has a pat h 10 all four outputs.
but the input information is directed 10 only one of the output lines. as specified by Ihe binary
combinatio n of the two selection lines A and B. Th is feature can be verified from the tru th
tab le of the circuit. For example , if the se-lection lines AB = 10, Oll1pUI llz will be the same as
the input value E. while all other outputs are maintained at I. Because decoder and de multi ­
plexer operations are obtained from the same circu it. a decod er with an enable input is refe rred
to as a decoder-demultiplexer.

Decoders with enable inputs can be connec ted toge ther to form a larger dec oder ci rcu it.
Figure 4.20 shows two j -ro-g-line decoders with enable inputs connected to form a 4-10-16­
line decoder. When w = O. the top decoder is enabled and the other is disabled . The bottom
decoder outputs are all O's. and the top eight outpu ts ge nerate min terms 0000 to 011 1. When
w = I , the en able conditions are reversed : The bottom decoder outputs generate mtnterms
1000 to 1111, while the outputs of the top decoder are all D's. Thi s example de monstrates the
usefulness of enable inputs in decoders and other combinationallogic components. In genera l.
e nable inputs are a co nvenient feature for interconnecting two or mo re standard compo nents
for the purpose of combining them into a similar function with more inputs and outputs.

,. ' X8 I--decoder

E

r-, I

-
3 )(8 I---decoder _

f;

I

Do 10 [J,

FIGURE 4 .20
4 x 16 decoder const ructed with two 3 x 8 decoders
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Combinational logic Implementation

A decoder provides the 2" rrur uerms of II input variables . Each asserted output of the decoder
is assoc iated with a uniq ue pattern of input b its. Since any Boolean function can be ex prcs...ed
in sum-of-rninterms form . a decoder that ge nerates the- rninterms of the function. together with
an external OR gate that fo rms their logical sum. provide .. a hardware implementation of the
function. In thi s way. any combinatio nal ci rcuit with I I inputs and m outputs ca n be imple­
me nted with an II-l<l-2"-line decoder and m OR gates .

The procedu re for implementing a combinational ci rcuit by means of a decoder and O R
gates requires that the Boolean functio n for the ci rc uit be- expressed a.. a sum of mint erms. A
decode- r is then chosen that genera tes all the mi nrerms of the input variable". The inputs to eac h
OR gate are selec ted fro m the de coder ou tputs acco rding to the list o f mint erms of eac h func­
tion. Th is procedu re will be illustrated by an example that implements a full-adder ci rcuit.

Fro m the truth tab le of the full adder (see Table 4.4). we o btain the functions for the com­
binational ci rcuit in sum-o f-minter ms form :

Sex. y. a) = ~ (\, 2. 4. 7 )

C(x. y. : ) = ~ ( ) . 5. 6. 7 )

S ince there are three input s and a total of eight minterm.... we need a three-to-eight-line de­
coder. The implementat ion is shown in Fig. 4.2 1. Th e- decod er generates the eight n untcrms for
x. y. and z. The OR gate for output S forms the log ical sum of minterms I. 2. 4. and 7. The OR
gate for output C forms the logical sum of mime rms 3. 5. 6. and 7.

A function with a long list of mintcrm s requ ires an O R gate- with a large num ber of inpu ts.
A funct ion having a list of k. mintc rms can be expressed in it" compleme nted fonn F' with
2" - k. minterm s. If the number of min terms in the function is greater than 2"/2. then F' can
be expresse d wi th fewer min rerms. In such a case. it is adva ntageous to use a :"lO R gate to
sum the min rcrms of F' . The output of the l'\OR ga te complements this sum and genera tes the
normal output F. l f NAN D gates are used for the decode- r. as in Fig. 4.19. then the external gales
must be NAND gates instead of OR gates. Th is is beca use a two-level :'Il'AN D ga te ci rcuit im­
plement s a sum-of-mi nrcrrns functio n .lOJ i.. equivalent to a two-le vel AN D-OR circ uit.

y

FIGURE 4 .21
Implementation of a fu ll adder wi th a decoder
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4 . 10 ENCODERS

An encoder is a digital circuit that performs the inverse opera tion of a decoder. An encoder has
2" (or fewer) input lines and" outpu t lines. The output lines. as an aggregate. generate the bi­
nary code corresponding 10 the input value. An example of an encoder is the octal-to-binary
encoder whose truth table is given in Table 4.7. It has eight inputs (one for each of the octa l
digits) and three outputs that generate the corresponding binary number. It is assumed that only
one input has a value of I at any given time.

The encoder can be implemented with OR gates whose inputs are determined directly from
the truth table. Ourput c is equal to I when the input octal digit is I. 3. 5. or 7. Output )" is I for
octal digits 2. 3. 6. or 7. and output x is I for digits 4. 5. 6. or 7. These conditions can be ex­
pressed by the following Boolean output functions:

z = D j + D3 + D5 + D7

y = D1 + D3+ D6+ D7

.r = D4 + D5 + Do + D7

The encoder can be implememed with three OR gates.
The encoder defined in Table 4.7 has the limitation that only one input can beactive at any

given time. If two inputs are active simultaneously. the output produces an undefined combi­
nation. For example. if DJ and Db are I simultaneously. the output of the encoder will be 111
because all three outputs are equal 10 I. The output II I does not represent eithe r binary 3 or
binary 6. To resolve this ambigui ty, encoder circuits must establish an input priority to ensure
that only one input is encoded. If we establish a higher priority for inputs with higher subscript
numbers, and if both lJ) and Do are 1 at the same time, the output will be 110 because D6 has
higher priority than D.l.

Another amb iguity in the oc tal-to-binary encode r is that an output with all O's is generated
when all the inputs arc 0; but this output is the same as when Do is equal to I. The discrep­
ancy can be resolved by providing one more output to indicate whether at least one input is
equa l 10 I .

Table 4 .7
Truth Table ofan Oda/-to -Binory Encoder

Inputs Outputs

D. D, D, D, D. D, D. D, x y z

I 0 0 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 I
0 0 I 0 0 0 0 0 0 I 0
0 0 0 I 0 0 0 0 0 I I
0 0 0 0 I 0 0 0 I 0 0
0 0 0 0 0 1 0 0 I 0 I
0 0 0 0 0 0 I 0 1 I 0
0 0 0 0 0 0 0 I 1 I I
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Table 4.8
Truth Tobie of a Priority Encoder

Inpu ts Out puts

O. 0 , 0 , OJ , Y V

0 0 0 0 X X 0
1 0 0 0 0 0 1
X 1 0 0 0 1 1
X X 1 0 1 0 1
X X X 1 1 1 1

Priority Encoder

A priority encoder is an encode r circuit that includes the priori ty func tion. The opera tion of the
priority encod er is such that if two or more inputs are equa l to I at the same time. the input hav­
ing the highest priority will take precede nce . The truth tab le of a four-input priority encoder is
given in Table 4.8. In add ition to the two outputs .r and y. the circuit has a third output desig­
nated by V: lh i ~ is a valid bit ind icator that is set to I when one or more inputs are equal to I.
If a ll input s are 0, there is no val id input and V is equal to O. The othe r two outpu ts are not in­
spected when v eq uals 0 and are specified as don 't -care co nditions. Note thut whereas X's in
ou tput co lumns repre...cnt don ' t-care co nditions , the X 's in the input columns are usefu l for
representing a trut h table in condensed fonn. Instead of listing all 16 rninterms of four variables,
the tru th tab le uses an X 10 represent either I or O. Fur example , XIOO rep resents the two
mi nterm s 0 100 and 1100.

Acco rding to Table 4.8, the higher the subscript num ber, the higher the priori ty of the input.
Input D.~ has the hig hest prio rity. so , regardless of the val ues of the othe r inputs. when this

D,

I I 10

D,

f "' D~ + D 1D'~

FIGURE4 .22
Map s for a p riority encode r
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~

'--\ "<,

~

..

4 . 1 1

FIGURE 4 .23
Pour-inp ut priorit y encoder

input is 1, the output for .ej- is I I (binary 3).~ has the next priority level. The output is 10 if
l.J..z = 1, provided that ~ = 0, regardless of the values of the other two lower priority inputs.
The output for 0 1 is generated only if higher priority inputs are 0, and so on down the priority
levels.

The maps for simplifying outputs .r and)' are shown in Fig. 4.22. The minterms for the
two functions are der ived from Table 4.8. Although the table has only five rows. when each
X in a row is replaced first by Oand then by I , we obtain all 16 possible input combinations.
For example. the fourth row in the table, with inputs XX 10. represents the four minterms
0010 ,01 10. 10 10. and 11 10. The simplified Boolean express ions for the priori ty encoder
are obtained from the maps. The condition for output V is an OR function of all the input veri­
abies. The priority encoder is implemented in Fig. 4.23 acco rding to the following Boolean
functions:

x = D2 + lh

y = 0 ) + D IDi

V = Do + D 1 + D2 + D.l

MULTIPLEXER S

A multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single output line. The selection of a particular input line is controlled
by a set of selection lines. Normally. there are 2n input lines and II selection lines whose bit com­
binations determine which input is selected.

A two-to-one-line multiplexer connects one of two l -bit sources to a common destination,
as shown in Fig. 4.24. The circuit has two data input lines. one output line. and one selection
line S. When 5 = O. the upper AND gate is enabled and 10 has a path to the output. When
S = I, the lower AND gate is enabled and 11has a path to the output. The multiplexer acts like
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FIGURE 4.24
Two-to -o ne-line muttlplexer
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I"

I" 0

Y' M UX Y

t,

an electronic swi tch tha t sch-ctx nne of two sou rces . The block dia gram of a mult iplexer is
sometimes depicte d by a wedge-shaped symbo l. as shown in Fig. 4.24(b). It sugges ts visually
how a selec ted one of multiple data sources is directed into a single destination. The multiplexer
illoften labeled "M UX" in blOl: \I. diagrams.

A fou r-to-one-li ne mult iplexer h. shown in Fig. 4.25. Each of the four Inputs. /n through
1.\. is applied 10 one input or an AK D gate. Selection lines S, and Soare dccol.k-d 10 selec t a

5,

5., - - - '-'

} '

5, 5" y

0 0 I,
0 I t ,
I 0 t,
1 I I ,

Ib ) Functton 1al:>l 0:

FIGURE 4 .25
pour -to-one-line multipleller
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particula r AND gate . The outputs of the A~D gate" arc applied to a single OR gale that pro­
vides the one -line output The function table lists the input that is passed to the output for
each com binalion of the binary selection values . To demonstrate the operation of the circuit.
co nsider the case when 5 150 = 10. The AXD gate associated with input h has 1\.\ 0 of its in­
puts eq ual to I and the third inpu t co nnected to 12. The other three AKD gates have at lea..t
one input eq ual to O. which makes their outputs equal to O. The output of the OR gate is now
eq ual to the value of h. providin g a path from the selected input to the output. A mult iplexer
is also called a delta selector, since it selects one of many inputs and steers the binary infor­
mat ion to the output line.

The AKD gates and inverters in the multiplexer resemble a decoder circuit. and indeed.
they decode the selection inputlines. In general. a 2"-lo- l-line multiplexe r is constructed from
an ,1-10-2"decode r by adding 2"input lines to it. one to each AKD gate. Tbeoutputs of the AKD
gates are applied to il ..inglc OR gate. The size of a multiplexer is specified by the number 2"
of its data input line.. and the single output line. The II selection tines arc implied from the 2"
data lines. As in decod ers . mult iplexers may have an enable input to control the operation of
the unit. When the enable input is in the inactive suuc. the outputs are disabled. and when it is
in the active "tate. the circu it funct ions as a normal multi plexer.

Multiple xer circu its can he combined with com mon selection inputs to provide multiple-bit
selection logic. As an illu-arntic n. a quadrup le z-to-l-line multiple xer is shown in Fig. ~ .26 . The
circuit has four multiplexers . each capable of selecting one of two input lines. Output Yo can be
selected to co me from either input Ao or input Bu. Similarly. output Y, may haw the value of
A 1or 8,. and won. Input selection line S selec ts one of the lines in each of the four multi ­
plexers .The enable input E must be acuve (i.e .• asse rted) for normal operat ion. Although the cir­
cuit contains foor z-to-t -line multiplexers. we are more likely to view it a-s 3 circuit that selects
one of two -l-bit setv of data lines. As shown in the function table. the unit is enabled when
E = O. Then. if S = O.the four A input.. have a path to the four outputs . If. by contrast. 5 ""' I .
the four B inputs are applied to the outpu ts. 1be outputs have 311 O's when E "" I. regard lclOs of
the value of 5.

Boolean Function Implementation

In Section 4.9. it was -bown that a decoder can beused to implement Boolean functions b)' em ­
ploying external OR gates. An examination of the logic diagram of a mult iplexer reveals that
it is esse ntially a decoder that includes the OR gale within the unit. The mintcrmv of a func­
tion are genera ted in ;. mul tiplexer by the circuit associated with thc selectio n inpu ts. The in­
dividual mint erm s can he selec ted by the data inputs. thereby providin g a method of
implementing a Boolean function of II variabl e" with a mult iplexer that has II selection inputs
and 2n data inputs. ()11 ~ for each rninrerm .

We will now show a more efficient method for implementing a Boolean function of II vari­
ables with a multiplexer that hits ,1 - 1 selection inputs. The first II - I variables of the func­
tion arc connec ted to the selection inputs of the multiplexer. Theremaining single variable of the
function is used for the data inputs. If the single variable is denoted by c, each data input of the
meltiplexer will bez. c', I. or O. To demonst rate this procedure. consider the Boolean function

r t». y. ,) = ~ ( 1.2 . 6. 7 )
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FIGURE 4 .26
Quadruple two-to -one -line multiple.er

This funct ion of three variable s can be impleme nted with a fou r-to-one-line mult iplexer as
shown in Fig. 4.27. The two variab les .r and )' are applied to the selection lines in that orde r; .r
is connected to the 51 input and y to the So input. The values for the data input lines are deter­
mined from the truth tab le of the function . When .rj- "" 00 . output F is equal 10 z because
F "" 0 wben c = 0 and F = I when z = I. This requires that variable z be applied to data
input O. The operation of the multiple xer is such that when .rj' = 00. data inpul 0 has a path to
the output. and that makes F equal 10 z. In a similar fashion. we can determine the required input
to data lines I. 2. and 3 from the value of F when xy = 01. 10. and II. respectively. This
particular example shows all four possibilities that can be obtained for the data inputs.
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F1GUR£ 4 .27
Implementing a Boolean function with a multiplexer

The general procedure for implementing any Boolean function of n variables with a multi­
plcxcr with n - I selec tion inputs and 2"- 1data Inputs follows from the previous example .
To begin with, Boolean function is listed in a truth table. Then first II - I variables in the table
are applied to the selection inputs ofthc multiplexer. For each combination of the selection vari­
ables. we evaluate the output as a function of the last variable. This function can be O. I. the
variable. or the com plement of the variable. These values are then applied to the data inputs in
the proper order.

As a second example. consider the implementation of the Boolean function

F(A. e. C. D ) ~ ~ ( 1.3. 4. I I. 12. 13. 14. 15)

This function is impleme nted with a multipl exer with three selection inputs as shown in ­
Fig. 4.28. Note that the first variuble A must be connected to selection input S2 so that A. B.
and C corres pond to selection inputs S2. SI< and So. respect ively. The values for the data inputs
are determined from the truth table listed in the figure. The corres ponding data line number is
determined (rom the binary com hination of ARC. For example. the table shows that when
ABC = 101. F = D. so the input variable LJ is applied to data input 5. The binary constants
oand I correspond 10 two fixed signal values. When integrated circuits are used. logic 0 cor­
responds 10signal ground and logic I is equivalent to the power signal. depending on the tech­
nology (c.g .. 5 volts).

Three-St at e Gates

A multiplexer can heconstructed with three-slate gates-digital circuits that exhibit three stares.
Two of the slates are signals equivalent to logic I and logic 0 as in a conventional gale. The
third Mate is a llixh -impedtmce state in which (1) the logic behaves like an open circuit. which
means thai the output appears to be disconnected. (2 ) the circuit has no logic significance. and
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FIGURE 4 .28
Implementing a four-input function w ith a multiplexer

(3 ) the circuit connected to the output of the three-state gate is not affec ted by the inputs 10 the
gate. Three-state gates may perform any converuicnallogic, such as AN D or NAN D. However.
the one most commonly used is (he buffer gate.

The graphic' symbol for a three-state buffer gate is shown in Fig. 4 .29. It is distinguished
from a normal buffer by an input co nt rolline enter ing (he bonom of the symbo l. The buffer
has a normal input. an output. and a control input that determines the state of the output.
When the control inp ut is equa l to I, (he output is enabled and the gate behaves like a con­
ventional buffer. with the outp ut equal to the normal input. When the control input is O. the
output is disabled and the gate goes to a high-impedance state. regardless of the value in
the normal input. The high-imped ance stale of a three-state gate provides a spec ial feature
not available in other gates. Because of this feature. a large number of three-state gate OUI­

puts ca n be connected with wires to form a com mon line with out enda ngering loadi ng
effec ts.

Normal input A ------t:?---: Output Y = A if C = 1
~ High-Impedance if C = 0

Control input C

fiGURE 4 .29
Graphic symbol for a three-state buffer
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The construction of multiplexers with three-state buffers is demonstrated in Fig. 4.30. Part
(a ) of the figure she .... s the con struction of a two- to-one-line multiplexe r w ith 2 three-state
buffers and an inverter; The two o utputs are connect ed together to fonn a single o utput line .
(Note that this type of connect ion cannot be made w ith gates that do nor have three-..tate o ut­
puts.) When the select input i..O. the upper buffer is enab led by its contro l input and the lo wer
buffer is disabled . Output Y is then equal to input A. Whe n the select input is 1. the lower buffer
is enabled and Y is eq ual to B.

The construction of a fou r-to-one-line multiplexer is shown in Fig. 4.3O<b). The outputs of
4 three-stare buffers are connected toget her 10 form a single output line. Thecontrol inputs to
the buffers determine which o ne of the four normal inputs 10 through 13 w ill be con nected to
the output line. No more than o ne buffer may be in the active state at any given time. The con­
nected buffers must becontrolled so that only I three-senebuffer has acce ss to the output .....hile
all other buffers are maintained in a high-impedance state. One way 10 ensure that no more than
one control input is active at any given time is to use a decoder. as shown in the d iagram. When
the e nable input of the decoder is O. all of its four outputs are 0 and the bus line is in a high­
impedance state because all four buffers are disabled. When the enable input is active. one of
the three -state buffers will be act ive. depending on the binary value in the select inputs of the
decode r. Carefu l investigati on reveals tha t this circuit is another way of constru cting a fou r-to­
one- line multiplexer.

0 ­

I l----J

21-- ---'
3

2 X4
decoder

I, ---- - - - - - --- -I:>---r--- y

- Sl
Select

-51>

Enable - ENL-_..:r--
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(a) z-io-t.ltne mux

FIGURE 4 .30
MUltipl ex ers wil h three-state gates
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Section 4.12 HOt Models of Combinational Circuits 1S9

HDl MODElS OF COMBINATIONAL
CIRCUITS

The Veril og hard ware descrip tion language (HDL) wa s introd uced in Sec tio n 3.10. In the cu r­
rent sect ion . we present mo re elaborate e xample.. and com pare alternative descri ption.. of com­
binational circuits in Verilog . Seque ntial ci rcuits are presented in the next chapter. As mentioned
previou sly. the module is the basic b uild ing block for mod eling hardware with the Veri log
HDL The logic of a modu le can be described in any one (Of a co mbination] o f the following
mode ling styles:

Gale-level modeling using instantia tions o f predefin ed and use r-de fined primi tive gates.

Dataflow modeling using cont inuous assignment statementv with the keyword a _...<; i ~n .

Behavioral mode ling using proced ural assignmem ..ratcrne nts with the keyword alw a ys.

Ga te-level (structu ral] modeling describes a circu it by specifying its gales and how they arc con­
nected with each other. Dataflow modeling is used mostly fur describin g the Boolean equation..
o f combinational logic. We ' ]] also consider here behavi oralmodeling that is used to describe
com binational and sequential circuits at a higher level of abstraction. Th ere is one other mod­
d ing style. ca lled switch-le vel model ing It is some times used in the simulation of MOS tra n­
sistor circuit mod els. but not in logic synthesis. \ I,,'e consider ","witch-level modeling bricO)" in
Section 10.10.

Gate·Level Modeling

Gate- level model ing wa.. introd uced in Sectio n 3. 10 wit h a si mple e xam ple . In this type of
represe ntation. a circuit is specified by its logic gates and their interconnections. Gate-le vel mod ­
el ing provides a te xtual description of a scbemauc diagram. The ventogHDL includes 12 bas ic
gates as predefined primitive ... Four of lhese primitive gate.. are o f the three-state type . Theothe r
eight are the same as the one.. Ii..led in Sec tion 2.8. They are all decl ared with the towe n..ase
keyw ords and. na nd . or . no r . "or. xecr. not. and bur. Primitives such as a nd are »-i npur
pnrmuves. Th ey ca n have any number of scalar inpu t.. (e.g.• a three-in put a nd pn muive). The
buf and not primitives are u-oe tpu r primitives. A ..ingle input can d rive multi ple output lines
distinguished by their idcnnficrs.

The verifoglan gua ge includes a functio nal descript io n o f each type of gate. too . The logic
of each gate is based on a four-valued ..ystem, When the gates are simulated . the simula tor
assigns.one va lue to the o utput of e ach gate at any instant. In addition to the two logic val­
ue s of 0 and I. there arc two other value..: unknown and ";1<" impedance, An unkno wn val ue
is de noted by x and a high imped ance by 1.. An unknown va lue is assigned duri ng si mula­
tion when the logic value of a signal if. am biguo us- for instance. if it can no t be det ermin ed
wheth er its value is 0 o r I (e. g.• a flip-flop wit hou t a rese t co nd ition ). A high-imped ance
co ndition occ urs at the o utput of three-..tate gate s that arc no t e nabled o r if a wire is inad ­
venently left unconn ected . The four-value d logic tru th table s for the a nd . o r . "or. and not
primitives are shown in Table 4 .9 . The truth tab le for the o the r fou r gates is the same. e xc..ept
that the o utputs are co mpleme nted . Note that for the a nd gate. the output is I only when
both inputs are I and the output is 0 if any input is O. Otherw ise . if one input is x or t , the
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Table 4 .9
Truth Table tor Predefined Primitive Gates

and 0 1 , ,
'" 0 1 x ,

0 0 0 0 0 0 0 1 , ,
1 0 1 , , 1 1 1 1 1, 0 , , , x x 1 , ,
, 0 , , x , x 1 x ,

xur 0 x , not input output

0 0 I , x 0 I
1 I 0 , x I 0, , , , x , ,
, , , x , , ,

output is x. The output of the or gate is 0 if both inpu ts are O. is I if any input is I. and is x
otherwise.

When a primitive gate is listed in a module. we say that it is instantiated in the module. In
general. component instantiations are statements that reference lower level components in the
design. essentially creating unique copies (or instances) of those components in the higher
level module. Thus. a module that uses a gate in its description is said to instantiate the gate.
Think of instantiation as the HDL counterpart of placing and connecting parts on a circuit
board .

We now present two examples of gate-level modeling. Both examples use identifiers having
multiple bit widths. called I'eerors. The syntax specifying a vector includes within square brack­
ets two numbers separated with a colon. The following Veri log statements specify two vectors:

output [0: 3) 0 ;

wi re [7: 0) SUM;

The first statement declares an output vector D with four bits. 0 through 3. The second de­
clares a wire vector SUM with eight bits numbered 7 through O. (Note: The first (leftmost)
number (array index) listed is always the most significant bit of the vecror.) The individua l
bits are specified within square brackets. so D[21 specifies bit 2 of D. It is also possible 10ad­
dress parts (contiguous bits) of vectors. For example . SUM[2: 01 specifies the three least sig­
nificant bits of vector SUM.

HDL Examp le 4.1 shows the gate -level description of a two-to-four-line decoder. (See
Fig. 4. 19.) This decoder has two data inputs A and B and an enable input E. The four outputs
arc specified with the vector D. The wire declaration is for internal connections. Three not
gates produce the complement of the inputs. and four nand gates provide the outputs for D. Re­
member that the output is always listed fi rst in the port list ofa primitive , followed by the in­
puts. This example describes the decoder of Fig. 4. 19 and follows the procedures established
in Section 3.10. Note that the keywords not and nand are written only once and do not have
to be repeated for each gate. but commas must be inserted at the end of each of the gates in the
series. except for the last statement. which must be termin ated with a semicolon.
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HDL Exa mple ~.I

1/Gate-level description of two-to-four-line decoder
/I Refer to Fig, 4.19 with symbol E replaced by enable . for clarity.

module decoder_2x4_gates (D, A. B, enable);
output (a; 3] 0 ;
Input A, 8 :
Input enable;
wire A_not. 8_not, enable_not;

not
G1 (A_not, A),
G2 (B_not, B).
G3 (enable_not. enable):

nand
G4 (010], A_not, B_not. enable_not),
G5 (DI1], A_not, 8 , enable_not),
G6 (D{2], A. 8_not. enable_not),
G7 (D[3], A. B, enable_not):

endmodule

Two or more modu les can be combined to build a hierarchical description of a design.
There are two basic types of design methodologies: top dow n and bottom up. In a lop-down
design. the top -level block is defined and then the subblcc ks necessary 10 build the IOp­
level block are identi fied . In a bottom-up design. the buildin g blocks are first ident ified and
then combi ned to build the lop-level block. Take. for example. the binary adder of Fig. 4 .9.
II ca n De conside red as a top-block component built with four full-adder blocks. while each
full adder is built with two half-adder blocks. In a top-down design. the four-bit adder is de­
fined first, and then the two adders arc described. In a bottom -up design. Ihe half adder is
defined. then each full adder is const ructed. and then the four-bit adder is built from the fu ll
adders.

A ha ltom-up hierarch ical description of a four-bit adder is shown in HDL Example 4.2 .
The half adder is defi ned by instantiating primitive gate s. The next module describes the
full adder by instantia ting two half adders. The third module desc ribes the four-bit adde r by
instantia ting four full adders. Note that the first character of an identifier ca nnot be a num­
ber, but can be an underscore . so the module name _ebi tadder is valid . An alternative name
that is mean ingful. but does not requ ire a leading underscore. is adder_4_bit . The lnstanti­
arion is done by using the name of the module thai is instantiated together with a new (or the
same) set of port names. For example. the half adder HA I inside the full adde r module is in­
stantiated with ports SI . CI . .r. and y. This prod uces a hal f adder with outputs 51 and eland
inputs x and v.
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HUt Exampl e 4.2

1/Gate-level description of four-bit ripple carry adder
/I Description of half adder (Fig. 4.5b)

/I module half_adder (S, C, x. y); II Verilog 1995 syntax
1/ output S, C;
1/ Input x, v;
module half_adder (output S, C, input x, y): II Verilog 2001,2005 syntax
II Instantiate primitive gates
xor (S, x, y):
and (C, x, y);

endmodule

/I Description of full adder (Fig. 4.8) /I Verilog 1995 syntax
II module full_adder (S. C, x, y, z):
/I output S, C;
1/ input x, y, z;

module full_adder (output S, C, Input x. y, z); /I Verilog 2001, 2005 syntax
wire S1, C1, C2;

/I Instantiate half adders
half_adder HA1 (S1, C1, x, y):
half_adder HA2 (S, C2, S1, z]:
or G1 (C, C2, C1):

endmodule

/I Description of four-bit adder (Fig. 4.9) /I Verilog 1995 syntax
II module ripple_csrry_4_bicadder (Sum, C4, A, S, CO):
/I output 13: OJ Sum:
/I output C4;
/I input (3: OJ A, B;
/I Input CO;
II Alternative Verilog 2001, 2005 syntax:

module ripple_carry-4_bicadder ( output (3: OJSum, output C4,
Input [3: 0] A, B, Input CO);
wire C1, C2, C3; II Intermediate carries

II Instantiate chain of full adders
full_adder FAO(Sum[O], C1, A[O], B[OJ, CO),

FAl (Sum[1], C2, A[l] , 8 [1), Cl ),
FA2 (Sum[2], C3, A[2], 8[ 2], C2),
FA3 (Sum[3], C4, A[3], 8[3), C3):

endmodule
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HDL Examp le ·L! illustra tes Verilog 2001. 2005 synta x. which eliminate s extra typing of
identifiers dec lari ng ihe mode (e .g.. ou tpun. rype (!TRI. and declarauon of a vect or range te.g.•
(3: OJ I. The first version of the standard ( 1995) use, separate stateme nts for these declarations.

Note that modules can be instantiated rnested j with in other modules. but modu le dc-clara­
lio ns cannot be nes ted : that is. a module de fin itio n Idc'claranonj cannot be placed within an­
other mod ule dec laration. In other wonk a mod ule defi nitio n cannot be inse rted int o the text
betw een the module and endmodule keywords of another module. The ani) ' wa)' on e module
defi ni tion can be incorporated into another mod ule i" by ins tantiating it. In..tantiat ing modules
within o the r mod ules creat es a hierarchi ca l decomposition of a design. A description of a mod­
ule is said 10 be a structural description if it is co mposed of instantia tions of other modules.
Note a lso that i nstance lIt1mes must be specified .... hen defined modules are in..tuntiated (such
a.. FAO for the fi"'l full adde r in 1h1: third modu le ). bUI using a name is o ptiona l whe n insranri­
aung primitive gates . Mod ule r ipplf'_ctlrl)'_4_biU uldu is composed of instantia ted and In­
terconnected full add ers. each of which is itself composed of half adders and ..orne glue "Wk.
The top level. or paren l modu le. of the design hierarchy h.the modu le rippfe_Cllr1)·_4jliUldder .
Four copies of fi, /C atlder arc its child mod ules, e tc. CO is an inpu t of the cel l form ing the least
significant bit of the chain. and C4 is the output of the cell formin g the most significant bit.

Three ·State Gates

As menti oned in Section "'.11. a three-state gate has a contro l inpu t tha i can place the gale into
a high-impedance ..tale. The high-impedance stale is symbolized by z in Verilog . There are fou r
type s of three-..tate gales. as sho wn in Fig. ..1.31. The bulifl gate behaves like a normal buff er
if cont rol ;; I. The o utput goes 10 a high-impeda nce ..tate 1 ....hen control ;; 0 "The hu linl
gate behaves in a similar [achion, exce pt that the h igh-impedance ..tate occ urs .....hen ("011/",1 "" I.
The two nol gates operme in a similar mann er. except that the o utput is the co mp le me nt of
the input when the ga le is nOI in a high -im pedance state. The gates arc instantiat ed with the
..tate ment

eate name toutput. i t/I III', clmlm /l:

i, --{>-o",

CU rl l rol~
hurifl

i'T °"'
comr ol

nolin

flGUAl '- .31
Three-state gates

" --{;;>----- 0 ",

CUrl ln'l~
hufifO

m --t»-- 0 ",

CtlrllfOI -.J
nohm
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The gate name can be that of any 1 of the a three-state gates. In simu lation. the ou tput can re­
sult in O. I. x. or z. Two examples of ga te instantiat ion are

bufif1 (OUT, A. control);
notifO (Y, B, e nable);

In the first example. input A is transferred to OUT when control = I. OUT goes to z whe n
control = O. In the second example. ou tput Y = z whe n enable = I and out put Y = B' when
enable = O.

The outputs of th ree-state gates can be connected together to form a common outp ut line.
To identify such a connec tion. verilog HDL uses the keyword lri (for tristate) to ind icate that
the output has mu ltiple drivers. As an example. cons ider the two-to-one-line multiplexer with
three-state gat es sho wn in Fig. 4.32.

The HDL description mu st usc a t ri data type for the output:

/I Mux with thre e-s tate output

module mux_tri (m_o ul, A. B, select);
outp ut m_out;
input A, B, se lec t;
trl - m_out:

b ufif1 (m_o ul, A, select) ;
bufifO(m_oul. B, select);

e ndmod ule

The 2 three- state buffers have the same output. In order to show that the y have a common con­
nection, it is necessary 10 declare m_ourwith the keyword t r io

Keywords wire and t r i are examples of a set of data types called 1/1;' /.1" . which represe nt co n­
nections between hard ware cle ments. In simulation. thei r value is detennined by a co ntinuous
ass ignment stateme nt or by the device whose ou tput they represe nt. T he word 1/1;'1 is not a key­
word. but represents a class of da ta types. such as wire. wor, wa nd . t r iosup ply l , and su pplj u.
T he wire decl aration is used most frequently. In fuct. if an identifier is used. but nOI declared.
the language spec ifics that it will be interpreted (by defaul t) as a wire . Th e net nor model s the
hardw are implementation of the wired-O R co nfiguration (emitter-coupled logic ). The wand
mode ls the wired-AND co nfigura tio n (open-collector technology: see Fig. 3 .28). The nets
sup ply ! and suppbu represent power supply and grou nd. respectively. They are used to hard­
wire an input of a device to e ither I or O.

select ....._ _ ---.J

FIGURE 4 .32
Two-to-one -line mu ltiplexer with three-state buffers
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Dataflow Modeling

Dataflow modeling.o f combinational logic uses a number of operators that act on operands to
produce desired results. Verilog HDL provides aboUl30 different operators. Table 4.10lists some
of these operator s. their symbols. and the operation that they per form. (A complete list of op­
erators supported by Vcrilog 20D1. 2005 can be foun d in Table 8.1 in Sec tion 8.2.) II is neces­
!'oaf)' to d istinguish betw een arithmetic and log ic op erations. so different symbo ls are used fo r
each. The plus symbo l (+) indicat es the arithmetic operation of addition : the bitwise log ic
AND ope ration (conjunction) uses the symbo l & . There are special symbols for bitw ise logi­
ca l O R (d isjunctio n). ~OT. and XOR. The eq uality symbol uses two eq uals signs (w ithout
spaces between them ) to distinguish it from the equa ls sign used with the assign statement. The
bitwise ope rators operate bit by bit on a pa ir of vector ope rands. The concatenation opera tor
prov ides a mechanism for appending multip le ope rands. For exa mple. two ope rands with two
bits each can be co ncatenated to form an o perand with four bits. The co nd itiona l operator acts
like a multiplexer and is ex plained later. in conjunct ion with HDL Exampl e 4.6.

Dataflow mode ling uses continuous assignment s and the keyword ass lgn. A cont inuou s as­
signment is a statement that assigns a value to a net. The data type famil y net is used in vcr­
ilog HDL to represe nt a physical connec tio n bet ween ci rcuit ele me nts. A ne t is decl ared
explic itly by a net keyword te.g.. " 'ire ) or by declaring an identifier 10 be an output port. The
logic value assoc iated with a net is determin ed by what the net is connected to. If the net is co n­
nected 10 an OUIPUI of a gate. the net is said 10 be driven by the gate. and the log ic value of the
net is determin ed by the logic value , of the inputs 10 the gale and the truth table of the gate, If
the ident ifier o f a net is the left-hand side of a continuous ass ignment statement or a procedural
ass ignme nt sta teme nt. the va lue assigned to the net is specified by an expression tha i uses
operands and operator s. As an exa mple. assumi ng that the variables were declared . a tWO-IO­
one-lin e mult iplexer with data input s A and B. select input S. and o utput Y is desc ribed with
the co ntinuous assignment

a ssig n Y "" (A & 5)I(B & - 5) :

Table 4 .10
Some Veril og HDL Operaron

Sym bol

+

&
I

>
<

{ }
'! :

Operation

binary addition
binary subtracnun
bitwise AND
bitwise OR
bitwise XOR
bitwise NOT
equality
greeter than
lcss than
concatenati on
conditional
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The relationship betwee n Y, A. B, and S is declared by the keyword a ssign. followed by the target
output Yand an equals sign. Following the equals sign is a Boolean expression. In hardware terms.
this assignment would beequivalent to connecti ng the output of the OR (I) gate (0 wire Y.

The next two exam ples show the datafl ow model s of the two previous gate-lev el examples .
The dataflow description of a two-to-four-line decoder is show n in HDL Example 4.3. The cir­
cuit is defined with four continuous assignment statements using Boolean expressions. one for
eachoutput. The dataflow description of the four-bit adder is shown in HDL Examp le 4.4. Tbe
addition logic is described by a single statement using the operators of addition and concatena­
tion. The plus symbol ( +) speci fies the binary addition of the four bits ofA with the four bits of
B and the one bit of C_in. The targe t output is the concatenation of the output carry C_OIII and
the four bits of Sum. Concatenation of ope rands is expressed within braces and a comma sepa­
rat ing the operands. Thus, fe _out, Slim} repre sents the five-bit result of the addition operation.

HOI. E xa mple 4.3

/I Dataflow description of two-to-four-hne decoder

II See Fig. 4.19. Note: The figure uses symbol E, but the
/I Verilog model uses enable to clearly indicate functionality.

module decoder_2x4_df (
output [0: 3) 0 ,
Input A,6,

enable
);

/I Verilog 2001 ,2005 syntax

Sum,
C_OUI,
A. B.
CJ n

assign

endmo dule

0[0] = - (- A & - 6 & -enabre).
0(1) = - (-A & 6 & -enabte).
0(2) = - (A & - 6 & - enebre).
0(3) = - (A & B & - eneble):

1I0L Exam ple 4.4

/I Dataflow description of four-bit adder

II Verilog 2001, 2005 module port syntax

module binary_adder (
output [3: 0)
output
input 13: OJ
Input

);

assign {C_out. Sum) =A + B + C_in:
endmodule
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Dataflow HDL models desc ribe co mbinational circuit s by their function rather than by the ir
gate structure. To show how dataflow descriptions faci litate d igital design. consider the a-bit mag­
nitude co mparator described in HDL Example 4.5. The mod ule spec ifies two 4-bit inputs A and
B and three outputs. One output (A_'eEl is logic I if A is less than R. a second output tA....ge BJ
is logic I if A is greater than B. and a third output (Ajq_B) is logic I if A is equal to B. Note
that equality (identity) i:-. symbolized wit h two equals signs ( = = ) to distin guish the operat ion
from that of the ass ignment operator ( = ). A Veri log HDL synthesis compiler can accept this
module description as input. execute synthes is algori thms. and provide an output netllst and a
schematic of ,I circuit equivalent to the one in Fig. 4. 17, all without manual interve ntion !

111>1. Exa mple ~ ,5

1/Dataflow description of a four-bit comparator

module mag_compare
( output AJ t_B, A_eq_B, A-9'-B,

input [3: OJ A, B
):
ass ign A_ICB =(A < B);
assi gn A_9t_B =(A > B);
assi gn A_elLB =(A == B);

endmodule

IN 200 1, 2005 syntax

The next exa mple uses the co nditional ope rator ( ? : ). This operator lakes three ope rands :

cnndition ? true-expression .' [alse -expression:

The condition is eva luated. If the result is logic 1. the true expression is evaluated. If the result is
logic O. the false expression ls evaluated. The two co nditions together arceq uivalent to an if-else
condition. HDL Example 4.6 describes a two-to-one-li ne multiplexer using the conditional ope r­
ator. The continuous assignment

assi gn OUT = select ? A : B;

specifies the co ndition that OUT = A if select = I . el se OUT = 8 if .1'('/ ('(' 1 = O.

lilli , Example .a,6

1/Datanow description of two-to-one-lme multiplexer

module mux_2x1_df(m_out. A, B. select);
output rn_out;
input A, B;
Input select;

assi gn m_out =(select)? A : B;
endmodule
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Behavio ra l Modeling

Oehavioral modding H'J""C'nl.. digi ta l circuits at a fu nctional and alaori thmic level. It is used
tnmtly to describe seq uential circuits, but can also be used to de scribe combinational circuits,
Here, we give two !oimple combinational ci rcuit examples to introduce the ubject. Behavioral
Il'lOlklina i..presented in more detail in Secti on 5.6. after the Mudy of -.coqucntial circuit...

Behavioral descrip tion..use the keywonJ al"I1)'!\. followedby an optionalevent con tro l ex ­
pres..ion and a li..t o f procedural a....ignmcnt ..rarcmems.The event control exprel'llioo ..peci fies
when lhc ..tatement .. will e xecute. The target ou tpul of procedural a....ignment stateme nts rnust
he of the ITa data type. Contrary 10 the "I~ data t)'1'1(' . whereby the target output o f an all­
sig nme m may he conunuoc..ly updated. a I"t"Rdata type rtta in!\' ih value until a new value i ..
assigned,

HDl Example " .7 ..bows the behavioral description of a two-to-one-tine multiplexer.
(Compare it whh 1101. Example " .6.l Si nce variable m_tlIII i.. a la'iet output. it mu..t be de­
clared a" I"t"J: da ta (in addition to the oulpul declaration ). The procedura l a, ..ignment state­
ments inside the al" a) " bloc k. are executed every ti me there i..a change in any of the variable
Ii ..ted after the @ symbol. (Noee that the re: is no semicolon (:) at the end of the al"a)-1I stare­
me nt. ) In th i'. case. these variables ure the input variable.. A. 8 . and select. 11lC statements
execute if A, 8. or select changes value . Note that the keyword or. in,lead of the bitwise
log k al OR operator -r, j., u"iCd between variables. The cond itio nal ..retemenr Ir-t"I"iC' pro­
vides a decisiun based uponthe value of the .f t'l t't "' input. The Irstatement can be written with­
Qui the equality symbo l:

If (select)OUT • A:

The statement implie s that St'It'C1 is checked for 10i!1c I,

IIUL Eumph' 4.7

II Behavioral doscription of two-tc>orlfMlne multlplellef

modul. mux_21l1_beh (m_OUl A, B, select):
o utp ut m_out:
Input A, B, seJect
~g m_out

. Iw.)', @(A or B or select)
If (select - - 1)rn_0U1 - A:
. 1,. m_out ::I B:

. ndmod ul.

HDl Example " .8 descr ibes the function of a four-to- one -line multiplexer. The lrlt'C'1 input
i, defined a, a two-bit \ ector, and outptJl )' isdeclared 10 have type rq:.1llc al,,-a) . !lIatcrnent. in
this example. ha.. a sequentia l blO(kenckN:tl betweenthe "cyword..(11 andrndcu"'4:.Tbeblock
i .. executa! whcnc ' ·er any or the inpu15 Ii!totcd after the @ )'lIIbtli changes in value . Tbe ('a\C' slate­
ment j" a meluwayCtW'llliliuoal branch etln~Whenever in_O. in_I. in..1.inJ orwl«, dlan~.

the case exprt~'ton (~/f'Ct) is evaluated and it.. value compared. from lOp to bouorn. ..... ith lhc
values in lhc Ii" of stall,'rnenl' that follow. theso-ce lled C1l"it" items. 1bC' Malcmtnt a'stll:iated with



Sect ion 4.12 HDt Models of Combinational Circuits 169

the first caw item that matches the case ex press ion is executed . In the absence of a match. no
statement is exec uted. Since select is a two-hit number, it can be equa l to 00. 0 1, 10, or I I . The
case items have an implied priori ty becau se the list is evalua ted from top to bottom.

The list is call ed a sensitivitylist (Verilng 1001.1005) and is eq uivalent 10 the 1!\'1'1It COil '

trol express ion rverilog 1995) formed by "Oking'' the signals.

HDL Example .a.S

/I Behavioral description of four-to-one line multiplexer

/I Verilog 2001, 2005 port syntax

m_out =In_O:
m_out =In_1:
m_oul =in_2:
m_out =in_3:

module mux_4x1_beh
( output reg m_out ,
Input in_O. in_1, i"_2, 1" _3,
Input [1: OJ select

);
always @ (in_O, iO_1 , in_2, in_3, select)

case (select)
2'bOO,
2'b01:
2'b10:
2'b11:

endcase
endmodu le

If Verilog 2001, 2005 syntax

Binary num bers in Ver ilog are speci fied and interpreted wi th the letter h preced ed by a
prime. The size of the numbe r is ....ri nc n first and then its value . Th us. 2' hOI speci fies a two­
bit binary num ber whose value is 01. Numb ers are stored as a bit pa ttern in memory. but they
can be referenced in decim al. oc tal. or hexadecimal form ats with the lene rs ' d . ' 0 , and ' h . re ­
spec tively. If the base of the number is not specified. its interpretation defau lts to deci mal, If
the size of the number is not specified. the system assumes that the size of the number is at least
32 bits: if a ho...t simulator ha.... a target word tcngth-c-say, M bits- the language will use that
value 10 store unsized num bers. The integer da ta type (keyw ord Integer) i ... stored in a 32-bit
representation. The underscore (_1 may be inserted in a num ber to improve readabili ty of the
code (e.g .. 16 ' bOIOU 110_0 101_001 1). It has no other effect .

The cas e cons truct has two import ant variat ions: cuse x and ca sea. The first will treat as
don 't -cares any bits of the case ex pressio n or the case item that have logic va lue x or z. The
easez construct treat s as don't-cares only the logic value z. for the purpose of detecting a match
between the case ex press ion and a case item .

If the list of case items does not include a ll possible hit pat te rns of the cese expression. no
match can bedetected . Unlisted cas e item s. i.e .• bit patterns that are not ex plicit ly decoded
can be trea ted by using the defau lt keyword as the , last item in the list of cas e items. The as­
...ocia ted suuernem will execu te when no othe r match is fo und. This feature is use ful. for ex­
ampl e . when there are more possible stale codes in a sequential machine than are actua lly used .
Having a default case item lets the designe r map all of the unused sta tes 10 a desired next stale
without having to elaborate eac h individual state. rathe r tha n allowing the synthes is 1001 10 ar­
bitraril y as... ign the next slate.
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The exernptes of bcbaviora l de~ription~ of combinational circuits shown bere are simple
ones. Behavioral modeling und procedural assignmenl ..retcmems require knowledge of se­
quential circuits and an: covered in more detail in Section 5.6,

Wri ti ng a SImple Test Bench

A tot bench i..an 110 1.program used(or describing and applying a stimulus to an IIDL model
of a circuit in order 10 h.~ it and observe its response during simulation.T~ benches can bequite:
complex and lengthy and may lake longrr 10 develop lhan the des ign that j, tested. The results
of a te..t are only a~ good as the: test bench thai is used to teMa circuit. Cart must be taken to
write stimuli lhat will te!Ol II circuit thoroughly, exercising all of the operating Ieatures thai are
specified. However. the te..t benches con~idemJ here an: relatively simple, since the: circuit\ we
want to re..1 implement only combinauonal logic. The examples are presented to dcmon\U'Ble
some ba...tc features of HDLstimulus modules. Chap(cr 8 considers tese bcnc~ in greater depth.

In eddiuon to empillying the 11I"a)" sraremem, te..t benches U\C' the Initial stete mcm ro pr0­

vide a stimulus to lhe circuit being l~lc:d . We use the term "al" a)', uetemem" 10o!loCly. Actu­
ally. aht a )"s is a Verllog language con..truct spccif)'ing now the as\OCi.ued statement is to
execute (subject to the event control expression). TIle al" 8)"s state ment executes repeatedly in
a loop. The Inllh.1 statement executes only once. starting from simulation time O. and may
connnue with any operations that are delayed by a gi\'C~n number of time units. ItS specifled by
the symbol'. For c..ample. consider the Initial block

Initia l
be gin

A - O; B - O;
' 10 "' - 1;
'20 A - 0;B - 1:

ond

The block ill enclosed between the: keywords begi n and end . At time O. A. and B are set to O.
Ten time units later. A is chanSed to l . jwenty lime unil\ after that (al , . 30) A. i..changed 10
oand B 10 I . Inpub sr....xified by a three-bit troth table can be generated with the Inlli..1block:

Initia l
tMtgln
O . 3"bOOO:
repea t (7)

11I 10 0 .0 + 3'bOO1;
ond

When the: simulator runs. the three-bit vector 0 ilro initialiled to 000 li t time - O. Thekeyword
repeat specifics a looping statement: 0 i5 Incremented by I seven limes. once every 10 lime
units. The re..ult is a M'qUCnce of binary numbers from 000 to III .

A stimulU1. module has the following form:

module test_module_name;

1/ Declare loca l reg and wire idenbfiert.

/I Instantiate !he des;gn module under teet.

II Specify 8 stopwatCh. uslng $finlSh to terminale lhe simulatIOn.
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/I Generate stimulus, using Init ial and alw ays statements.

/I Display the output response (text or graphics (or both)).

endmodule

A test module is wr itten like any other module. but it typically has no inputs or outputs. The
signals that are applied as inputs to the design module for simulation are declared in thc stim­
ulus module as local reg data type. The outputs of the des ign module that are displayed for test­
ing are declared in the stimulus module as local wire data type . The module under test is then
instantiated. using the local identifiers in its port list. Figure 4.33 clarifies this relationship.
The stimulus module gene rates inputs for the design module by declaring local identifiers t...A
and C B as reg type and checks the output of the design unit with the wire identifier ,_c. The
local ide ntifiers are then used to instantiate the design module being tested. The simulator as­
sociates the (actual ) local identifiers within the test bench.t...A , ,_B.and ,-COwith the formal
identifiers of the module (A, B, C). The association shown here is based on position in the port
list, which is adequate for the examples that we will consider. The reader should note, however,
that Veri log pro vides a more flexible name association mechanism for co nnecting ports in
larger circuits.

The response to the stimulus generated by the inilia l and a lways blocks will appear in text
formatas standard output and as waveform s (liming diagrams) in simulators having graphical
output capability. Numerical outputs are displayed by using Verilog system 'asks.These are built­
in system functions thai are recognized by keywords that begin with thc symbol S. Some of the
system tasks that are useful for display are

Sdlsplay-c-display a one-time value of variables or strings with an end -of-line return.

Swrile-same as Sdisplay. but without going to next line.

$monitor-display variables whenever a value changes during a simulation run,

$Iime-display the simulation time,

$finish-tcnni nate the simulation.

m:i~l:~'~:~.t::;~~~(~
..j~ (<;:;

panl~~i-t=~',

FIGURE 4 .33
Interaclion between stimulus and design modules
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The syn tax for $d islJlay , $write , and $mo nltor is ofthe fonn

Task -name (format specification, argumem list }:

T he formal specification uses the symbol % to spec ify the radi x of the numbers tha t are dis­
played and may have a string enclosed in quotes C).Th e base may be binary. deci mal. hexa ­
decim al. or octal. idcntjfled with the sym bols %b. Ckd. %h. and %'0. respectively (q. B. 'l' O. q.H.
and %0 are valid too). For exa mple, the statement

Sdispla y f'%d %b %b-, C, A, B):

speci fies the d isp lay of C in decimal and of A and B in binary. No te that there are no commas
in the former speci fication. that the format specific ation and argu ment list are separated by a
comma. and that the argume nt Jist has commas betw een the variables. An example that spec­
ifies a string enclo sed in quotes ma y look like the statement

$di splay ('"time = %OdA '" %b B = %b-, Stime, A, B);

and will produce the display

time =3 A = 10 B =1

where (time = ). (A = ), and (B =0 ) are part of the string to be displayed . The format spec tflers
/lOd. 'kb. and 'k b specify the base for Stlme . A. and B. respectively. In displaying time val­
ues. it is better to use the form at %Od instead of %d. Th is provide s a display of the significa nt
digits without the lead ing spaces that %d will include. (%d will display abou t 10 leading spaces
because time is calculated as a 32· bil num ber.)

An exa mple of a stimulus module is shown in HDl Example 4.9. The ci rcui t to be tested j.,

the two-to-one-line multiplexer described in Example 4.6 . The module Ullu:c_2.tl_df has no
ports. The inputs for the mux are declared with a reg keyword and the outpu ts .... ith 3 w ire
keyword . The mux is instantiated with the local variables. The initial block speci fies a se­
quence of binary values to be applied during the simu lation. The output respon se is checked
with the $mo nitor system task. Every time a variable in its argument changes value. the sim­
ulato r displays the inputs, output. and time. The result o f the simu lat ion is lis ted under the sim­
ulation log in the example. It shows that In_out = A when select = I and In_OW = B when
setect » O.vcnfying the operatio n of the multiplexer.

MDL Example 4.9

1/Test ben ch with stimulus for mux_2x1_df

module cmux_2x l _df;
wire l_mux_ou l:
reg I_A. t_8 :
reg I_select;
param eter stop_lime = 50;

mux_2x1_df M1 (l_mux_out. t_A, I_B. t_select); II Instantiation of Circuit to be tested
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Initi al # stop_time Sfinish;

init ial begin
I_select = 1; I_A = 0; I_B = 1;

#10 t_A = 1; I_B = 0;
#10 I_select = 0;
#10 I_A'" 0; 1_8 " 1:

end

Initial beg in 1/Respon se monitor
II Sdlsplay r time Select A B m_out" );
1/Smonlto r (Stlme.. - %b %b %b %b~, I_select, I_A, I_B. t_rn_out);
Smon itor ("time=~, Stime .. "select = %b A = %b B = %b OUT = %b~,

I_select, C A. C 8 . Cmu x_ouI);
end

endmodule

1/ Dataftow description of two-to-one-fine multiplexer

1/ from Example 4.6
module mux_2x1_df (m_out, A. B. select);
outp ut m_oul;
input A. B:
Input select;

ass ign rn_out = (select)? A : B;
endmod ule

Simulation log:
select = 1 A =O B = 1 OUT = otime = 0
seled= 1 A= 1 B = OOUr - 1 time ·10
seIed:=O A = 1 B =o o u r = Obme = 20
select = OA = 0 B = 1 our = 1 time =30

Logic simula tion is a fa'>t. accura te method of ana lyzing co mbinational circuits to veri fy
that they operate prope rly. There are two types of verification: functional and timing. lnfulIc­
tionaf verification. we study the circuit logical operat ion indepe nde ntly of timin g considera ­
tio ns. This can be done by deriving the trut h table of the combinational ci rcuit. In timing
verific ation. we study the ci rcuit's operation by including the effec t of de lays through the
gates . Thi s can be done by obse rving the waveforms at the outputs of the ga tes whe n they
respond to a given input. An examp le of a circuit with gate de lays was presen ted in Section
3.10 in HDL Examp le 3.3. We next show an HOI.. example that prod uces the tru th table of
a co mbinatio nal ci rcuit A $monito r system task d isplays the ou tput caused by the given
stim ulus. A co mmented atrerna rive sta tement having a Sdlsplay task woul d create a header
that co uld beused with a mo nitor statement to eliminate the repetition of names on each
line of output.

The analysis of com binational circ uits was covered in Section 4.3. A multilevel circuit of a
full adder .....a.. analyzed . and its truth table was derived by inspection. Thegate-level description
of this circuit is shown in HDL Example 4.10. The ci rcuit has three inputs, two outputs. and
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nin(' gate~. The tJc"crircion of the circui t follow~ lhe interconrections between the gate' ac­
cord ing 10 the scbemanc diagram of f ig, 4.2. The stimulus for the circuit is listed in the sec­
ond module , The i "pu l ~ for ~ imulat i ng the circuit are specified with a three-bit R1t vector D.
D/l / is eq uivalent 10 input A. V/ / Ito input B. and D/O/lo input C. The OIJtpulSof the circui t
F. and F;: art dec lared a~ " lIT. The complement of 1'2 i~ named f "2_b to illustrate a common
induMry precnce for designati ng lhe complement of a sjgnal ( i n~tC'ad of appending _n QI) . This
procedure follows the -reps outlined in Fig. 4.33. 'The repea t loop pro·videsthe seven binary
numbers after £XX) for the truth table. Tbemull of lhe simulation [tencrat~ the OUlpol truth lable
dh.played with the example. The truth table 1i ~led shows that the circuit i, a full adde r.

II Dt f:ll.i1 mpl~ ,u o

II GaI&4evel deSCl'iptiOn of Circuit or Fig. 4.2

modul. CirCuit_otFig_4_2 (A.B. C. F1, F2);
Input A. e.C:
output F1, F2;
wi,.. T1, T2. T3, F2_b, E1, E2, E3;
or g l (n , A. e , C);
a nd g2 (12 . A. B. C);
a nd g3 (E1. A. B);.n.g4 (f2, A, C):
a nd g5 (E3. B. C);
or g6 (F2, f t . f2 , f3):
not g7 (F2_b. F2);
a nd g8 (T3. n ,F2_b);
... g9 (F1, T2. T3):

endmodul.

II Stimu lus to analyze thecircu it

modul . tes t_CirCuit;
.... 12'0) 0 :
wlr. F1. F2;
C'cuil_O'_F1IL'_2 "'] 4_32 (0[2),0(1).0(0). Fl , F2):
Initial

begin
0 - 3'bOOO:
r. peat (7) #10 0 - D. 1'b1:.n.

Initial
$monlto r r ABC - %b F1 - %b F2 - %b -, D, F1. F2):

e ndmodu"

SimulatiOn log: ABC - 000 F1 - 0 F2 - 0
ABC - 00 1 F1 - 1 F2 - 0 ABC - 0 10 F1 - 1 F2 - 0
ABC - 011 Fl - OF2 - 1 ABC - 100 F1 - 1 F2 "0
ABC - 101 F1 - 0 F2 - 1 ABC - 110 F1 - 0 F2 - 1
ABC - 111 F1 -1 F2 - 1
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PROBLEMS

Answers to probl ems marked with · appear al lhc end o f the book. Where appro priate. a log ic design
and its related HDl mode ling problem are cross refere nced .

4 .1 Con sider the ccmbinauonal circui ts shown in Fig. N .I (IfDl- o;ee Probl em .. ...9).

A --r----------f--...,

8 -~+--1'>~1,
c --t-f--'---L

L-=L>--F'
AGURE P4.1

(a )· Derive the Boolean e xprr.l>sioOl' for T t throu gh T•. Evaluate the outputs F I and F211-\a func­
tion of the four inputs .

(b) Liil the tru th table with 16 bi.nary oombinat.ion!l.of the four input variab~. 1hen liMthe bi­
nary \·a.lues for T1throop' T. and OUTputs F 1and F2 in !he tab le.

(c) Plot the Boo lean outpul (unct ions obt ained in pan (b! on maps, and ~how thai the sim plified
Boolean eXpRssioo s are equi valent to the ones obtained in pan(al.

4 .2- Obtain the simplified Booleanexpresslcns for oorpets F and G in rerms o f the input variables in
the c ircu it of Fig. N .2.

G

F

"-
v J r J

- J , I ')-

1 1
D

FIGURE'4.2

8

C

4 .3 For the circuil sbown in Fig. 4.26 (Section 4.11).
(a) Write the Boo lean funcnoes (or lhe (ou r ou tputs in term s o f the inpu l variabl es .
(b ,· U the circuit is listed in II truth table . how many ro ws and columns wou ld lhe~ be in the

table?
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4 .4 De~iin 4 ct.Jmbin.a ltooaJ circuit with tnree input~ and onc output.
Ca) Tbe output i~ I wben lhe binary valueof the input ~ i ~ Icn than .l lhc output i' OOlhefy,i'loC.
Cb) Tbe output i~ I when the binary .... Iue of the inpub i~ an odd number.

4 .5 l:Jnii n . rombin.alionaJ circuit with three input!.. A . y. and :. and tbree outpurs.A. 8 . and C. "'11m
the binary input i' O. 1. 2. or 3. the binary output i.. two , K. ler than the input. When the binary
input i..4 . S. 6. or 7. the binary output i~ uuee len lhan lhe input.

4 .6 Amajority circuit i,. romb in.tKJRlIcircuit wboseoutput i~ cqual to I if the Input variah~ have
II'IlJn: I '~ than 0',_The outpul h OOlhcrwi'IC.
Cal· Oni, n . tIft,: ·inpul majority circuit by findin, the circuiu truth table. BooleanC(jU&tiort.and

a lOiic di. Sram.
eM wrue and vcrify . VcrilOl daanow mudd of the circuit.

4 .7 Oni, n 11Io."tXllbinalional cin.'1Iit that COIn-crt, a four·bit Gray rode 4Table 1-6. to . rour·bil bina·
I'}' numtlt"r.
Ca)- Implemenl the circuil wilh exclu..ivc-oR ' lI IC".

cbl V~i nlt . Cll...:' ..catemcnt. .....'rite and ..-crify a Vcrilo, model of the circuit.

4 .• - De..i, n . ..'OoJc convener that C'Olwert,. dc<imal J iiit from the 8. 4. - 2. - 1rode to BCD ( I«

Tablc I .~ J . (HDl - see ProblcmUO.)

4 .9 An ABCD.to-'IoC\ Cn-'IoCln)Cnt d«odcr i,. combinational circuit thaI convert, a dc<imal dilit in
BCD to an ilppror riatc rolk (or the 'Clcc1ion o( loCllmcnh in an indicalor uiON to ditoplay the cec­
imal digit in a fantiliar form. The K vcn outpul' of lhe tb.'OoJcr (a. b. c, J. ,.f, gl select the ClJI'.

K"pondin, 'o(',mc-ms in the di..pl. y. II~wn in FI, . P4.9(a). The numeric di, play cbosen to
KpKloCnt thed«irrud di,it is ,,"-,wn in Fi,. P4.9tb). U, in. a truth taMe and KunaUllh map". de­
"In the BCD- to-~vcn· !lC8mcnt~Jdcr. u~in, a minimum numbcrof l ate'. The s.i .. invalidcora­
biru.tion....hould r<'!>U1t in a blank di..play. (IIDt.-...cc Problem 4.51.'

•

(al SelUl'lCnl ~ltna t i " n

FIGURE ' 4 .9

4 .1 D-' Oni,n a four·bil ..·ombirulional circuil 2', romplemenlcr. (The outpullcncrate, the 2\ comple­
ment of the inpul binary number., Show that the circuit can be ron1oU\K1Cd ......hh el c!u\h'c-OR
1. lc, . Can you predict .... rn.t the output (unction.. are f(1I" a five-bu 2', romplcmcnlt'r?

4 .11 V,i nl four half-aJdcn (HDL- ICC Problem-'.521.
(a) De..i", . four-bit rombtn.:llional circuit irJl.:n:mcntcr (a circuit tb.1t Mkb 110 . four·bit bina·

I'}' numl:lcr).
(bl Or, i,n a four-bit rombinali(JRlI circuit dccKmcntcr 'a cirro il that wbtrac1~ I from a four­

bit binary numberl.

4 .12 (a) De..i,n . t1a lr· ~ubU1",:lor circuit .....'ith i npuh .~ lind y and OUlput~ Oil/ . nd 8_ . The circuit
\Ubtra~:b t~ bit, x - ).and plill,."n the difference in DiIJ and the borrow in B_ .
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(b)· Design a full-subuactor circuit with three inputs. x. y. B/~ . and two outputs Diffand BOlI/ . The
circuit subtracts x - ). - B,~ , where Bm is the input borrow. 8 ",,/ is the output borrow. and
Diff is the difference.

4 .13" Tbe adder-subtracter circuit of Fig. " .13 has the following values for mode input M and data in­
puts A and B:

M A B
(0) 0 01 11 0 110
(b) 0 1000 100 1
(0) I 1100 1000
(d) 1 0 101 10 10
(0) I 0000 000 1

In each case. determine the values of the four SUMoutputs. the carry C. and overflow V. (HDL­
see Problems 4.37 and 4.40.)

4 .14" Assume thatl he ell.c1usive-ORgate bas a propagation delay of IOns and that the A.IIJDorO R gates
have a propagation delay of 5 ns. What is the total propagation delay time in the four-bit adder
of Fig. ...12?

4 .15 Derive the two-level Booleanexpression for the output carryCol shown in the Jookahead carrygen­
erator of Fig. 4.12.

4 .16 Deline the carry propagate and carry generate as

p; "'A/ + B/
0 / - A,B;

respectively. Show thai the output carry and output sum of a full adder becomes

C /+ I = (C/ O;' + P/ )'
Sj =: (P,G;,) $ C/

The logic diagram of the first stage of a four-bit parallel adder as implemented in Ie type 74283
is shown in Fig. P-I.J6. ldemify the P/ and 0;' terminals and show that the circuit implements a
full adder.

c,----f)_--~--[>O_-...J

c,

FIGURE P4 .16
First stage of a parallel adder
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4.17 Show thilt the output c;any in a fuJl ·ltddct c;irwilnn beu~ In the AND-OR·ISVERT form

C/. 1 • G; + P,C, • (G/P,' + e r'C/ )'

IC Iype 701 182 JSIl loo.. , htlltJ c;AIT)' ' C'MrllIOf dn.-uil lhal BC'nC'f8IC'1 tht c;atrin wjthAro.'O·OR·IN·
VERT IAOI) '1I 1('~ 1'C'C' Section ) ·8.1'tbc cin:uit ,\\U!TK'SIMlltIe inpul lmTIinal!o hau' tnt com­
pkmenh nf the (ts.lhe P:•. •nd of C•. Derive lhe: Book an functions fOf the loubhe:1lJcanin
Cz•C). and C~ in thi.IC. lHi",: Use the: tquatiun 'MI~t i fution rnetbod to cerive the ~arriel in
rerms of C,-)

4.1S· ~i,n 1I comt'lin;UKJnlI circuu that , ennal('llo the: 9 's compk!TK'nt of a BCD diSil. tIIOL - 'C'C'
Pruhk m 01 .501.)

4.19 ConslfUl:1 1 BCD .kkkr-lubtnM:tor cucuu. U~ tt'lC' aCI> Idder or Fis . 4.14 andthe II', compte­
menter of Problem 01 ,II'. UlIC blocLdiairams for the: compooenu . (HOL - !ICC Problem 4.55.1

4.20 A bilW)' multiph"r multipliC'$ 1","0 un\ii ned four-bit numben.
tl) Usin, Ar-;D ~ate\ and bil1lll)' Id&en (lICC Fia. 01 ,16/. de·dsn lhe cin:uil.
lb) Wrile and \('tlf)' II VcrilOJ dataflo..... mo,Jcl of the circuu,

4 .21 De\ i, n a cumbin;lt ional cin."Uil thai comparn twofoor·bil numbC'n IochccL if the)' areel.jual. 'The
cin:uil.I"lUlput i!o (" Iual to I if the: two nembers are C'qual and 0 otherwise.

".U· De\iin an ('1I\.'ns·3·tlJobif\MY d«OdCf u\ ;n, the unu'oCd L:ombinationl of the code a~ do,fl -('af('
condilions. (fUJl. - lICC Pnlhll.'m 4.4 2.)

4 .23 Dnllr lhe: ll.Jlllc dl.ll fI m of . t.....o-Io·four· line dI.'\:OOCl' U, inl'.) NOR ' III~ 0111)'. and(b) NASD
' lit" onl)'. hlL:llkIc an ('nable input.

4.2.4 Oni,n a BCD-to-&cimal de\."tJlkrU\inl the: unused ~'Offibinal iOll' of the: BCD CtJlka, do."IIl ·I-('af('
CtJlldilions. (HOt - see Problem ·1.60.)

4 .2.5 Ct"lll\ttul."1 a 5-lo-JI·line de\."twJer with foor J ·lo-8-line de\."tJlkn with enabk and . 2·hl-l-1i1l(' dr·
rodrr. Use bkd Jiapam, for lhe Ctlmponrnb.

4- 26 COII'>lruo.·t . 4·to- !(l.line de\."tJdcr with five 2..0-4·line <krodcn wilh enabk.

4 .27 AcOllIt>inatiollal d n:uil i\ ' pI."' ifiC'd by the folluwini three Boole;m fur",..ti("IIl' :

F,(,.4 .B. e) . ! (J .5.6)
F:(,.4 . H. C) . I {I.oI)
F)(,.4 .B. e) . ! (2. 3. 5.6. 7)

Impk mcnt the ('in:uil wilh I ~wJer consttuell.'d wilh NAND , ales (similar to Fi, . 01 .191and
NAND or AND ~ .lln ~'UflI'II.'\.'taI lu the drxudI.'f outplllJo. U!o(' '' t*xk diagram for the de\."tlder. Min­
imize the: numhel of inpub in the enerna t gaIn.

4 .28 U\ini a d«odt'1' ~nd C'llemaJ ,ale\. dc!.i ln the Ct'llI"lbihOlli{lnal cil'C\li l dl.'finN by the folk"","in. ueee
Boolean fun<;1KJ!l\ :

(a l f l • .I ') " : ' + .I t.

f : · .f)" t.' + .1' .\'

t: » ....y.t. .. .1,\'

Ib) r, » t l" of. t) t.

1": • ) "t. ' ....t ) ·· + .,.t.'
f ) . (.f' -+ ).)t.
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4 .29'" Design a four-input prio rity encode r with inputs as in Table 4.8. but with input Do haying the
highe st priori ty and input D3 the lowest priority. ( HDL-~e Problem 4.5 7.)

4 .30 Spec ify ihe truth tab le of an octa l-to-binary priorit y encoder, Provide an output V to indicate that
at least one of the inputs is present. The input with the highest subscript number has the highest
priority. What will be me value of the four outputs if inputs Dl and Dt> are I at the same time?

4.n Con struc t a 16 X I multiplexer with two 8 X I and one 2 X I multiplexers. Use block dia­
grams.

4 .32 Implement the following Boolean functio n with a mulnplexer (HDL-see Prob lem 4.46) :

(0 ) F(A . B. C. D ) • ~ (O. 2. 5. 7. 11. 14)
(b) F( A. B. C. D ) - n (3. 8. 12)

4 .33 Implement a full adder with two 4 x I muniplexers.

4 .J.4 An 8 X 1 mult iplexer has inputs A. B, and C con nected to the selection inputs 52. 51' and 50- re­
spectively. The data inputs 10 through 17 are as follows:

(a)· I I "" 11 '" / 7 '" 0; 13 "" /5 "" I; 10 '"" /J - 0 ; and 4. "" 0 ' ,
(b) / 1 - / 2 '" 0 ; 13 = 17 "" 1; 14 " Is - 0 : and 10 - It> "" D' .

Determi ne the Boolean funct ion thai the multiplexe r implemerus .

4 .35 Implement the following Boole an function with a 4 X 1 mult iplexer and exte rnal gates.

(a)· F(A. H, C, D ) = ! (I . 3. 4, 11. 12.13. 14, 15)
(b) F(A , B, C. D ) '" I (1.2, 4, 7, 8 , 9, 10. 11. 13, 15)

Co nnect Inputs A and B to lhe selection lines. The input requirements for the four data lines will
bea function of variab les C and D. The se values are obtained by expressing F as a function of C
and D for eac h of the four cases whe n AB = 00,01. 10 , and 11. The functio ns may have to be
implemented with external gales and with con nect ions to power and gro und.

" .36 Write the HDL gate-level de scription of the priority encoder circui t shown in Fig . 4.23 . (HDL ­
see Problem 4.45 .)

4 .37 Wrile the HDL gale-leve l hierarchical description of a fou r-bit adder-subtracte r for unsigned bi­
nary numbers. The ci rcuit is similar to Fig. 4 .13 bUI without output V. You can instantiat e the
four-bit full adde r described in HDL Example 4.2. (See Problems 4.13 and 4.40.)

4 .38 Write the HDL dataflow description of a quadruple two-to -one-tine multiplexer with enab le. (See
Fig. 4.26.)

4 ,39l' wnre an HDL behavioral description of a four-bit comparator with a six- bit output ytS:O). Bit S
of Y is for "equals:' bit 4 is for "not eq ual to," bit 3 is for "grea ter than," bit 2 is for "less than,"
bit I for "greater than or eq ual to: ' and bit 0 for "less than or equal to."

4 .40 Using the condi tional ope rator (1 .), write an HDL dataflow descri ption of a four-bit adder sub­
tractor of unsigned numbers . (See Problems 4.13 and 4.37.)

4 .41 Repeal Problem 4.40. using a cycl ic behavio r;

4 .42 (a) Write an HDL gate-level descri ption of the BCD -to-excess-3 co nve rter ci rcuit shown in
Fig. 4.4 (see Problem 4.22).

(b) Write a dataflow dcS(.'ription of the BCD-tQ-CXCCliS-3 converter. using the Boolean expres.~ ions

listed in Fig. 4.3.



....... end

....... '"
8ltWlM eJlClUaivoa Ol"

Add (AMume '" tlnd B ... unelgnedl.......
BdwlM~ 1(

(cf' Wnte an HOL behavkxal~pUon01. BCD-IO-C~...l COClwrlCT.

(dl Write . ~ ttcacb to wmulate and tnlthe BCD-~.ceu.J COClvntn cirnlil in onkr 10 vn­
if)' the uuth 1.&. 00.:... aU ueee circuiu.

4.4J EJ.plaln the f\l.lKCIOG ol lht circWt ipecifJCd by lhc fulkrtoin, HOI. dncrip6on:

module Prob4_43 (A. B, S , E, Q );

Input 11 : 0) A. B;
Input S. E.
outPut 1' :0) Q.
--'sJn Q - E 7 lS 7 ... : Bl : 'W;

endmodule

4 .44 Usin,. CI~ ..,Iemenl. wri te In HOL behavionl detaiptioa of I d ,ht·bit arithmetic.lot:ic
unit (ALU). The circuit ha\ . 1.hlTe·bit wI«! bus fSfoO. d ,hl.bit input dltapath, fA(7: 0/ and

8{ 70' 0/, In dJtIl ·bil OUlput dlllp"lh 1.]{7: Of). and perform the arillunettc and Iot:icll opera'
tion , li\IN bdo lO

~ Opem~

000 '1 - l ' bO
001 '1 - " & B
0 10 '1 -" 18
011 '1 -" ~ 8

100 '1 • " + 8
101 '1 • A - 8

110 '1 • " A

111 '1 . I 'bff

4A5 Write an HOI. behavioral dncrip600 01.. four ·input priorit)' encoder. Ute I four-bit \ 'K'IOl" fOt"
the 0 inpulJ and;al( ... . ,. block with jf-ebe w.a&mwnu. Auume thai: inpd O[ JI tau the hi~
nI priority bee PTobkm 4.36).

4 .46 Repeal ProNem .&J2. u\in, I d.atafiow dncription.

4A7 Repelt Prob&nn .&,37. u ina: a datafio,.. detcriptioo.

4.... De\-elopandmodify the ri,hl: -bit ALU IpC'rifJCd in Problem ...,u to dw it tw lhtft·.case output
Q)fIlJ'oBcd by aa mabIr inpvl. En_Write . In( bmdl andu mulale the cimlit.

4A9 For the circuit ""Nin in R, . P4.1.
fa ) ....rile and vtnf) and verify a pce'~\'d HOL ItKllilI 01 the cirnlit
(b) compare your multi .. ith 1holle obtained in Proble m 4.1.

4 ,50· Uwn, ac...e Q!CmmL developand simulate . behavionl modd 01the 8-1-2-1 10BCD rode 001II'
\ ·etttr dN:ribed In Proble m 4.8.

4 ,51 Dr\'dop and Wnulale a behavioral tnOLkl of tht ABC().to-wven-te ,IDent d«odn dncrtbed in
Problem ".9.

4 ,52 U, in,. con linlltlUI .nip mmt. lkvdop and, imulalc. dataflow model of
,.) the four·bi t u'lcttmcntn delCribed in Probkm " .I I' a)
lb) the four-hil d«mncntn delcriMd ill Problem " .1lib).

4 .5) [)e,.f'1op and umu1alc. wuetunJ model ot the decimai Uln w..1l in M, . 4.1".

4 .54 ~f'kJp and Wnu" a bcNvicnJ modeloIacircuit thai aeneraan !he 9' , comp&ement oIa BCD
dip (I« Probkm " .18).
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4 .55 Con~tahierarchical mode l of the BCD adder-subuactor describedin Prob lem 4.19.1lIc BCD
adder and the 9 '5 complerrenteran to be described as behavioralmode ls in separate mod ules. and
they arc to be imlanliated in a top-le vel mod ule.

4 .S6- Write . ccnueuous assig nme nt statemen t lhat compares IWO four-bu num bers toc beck if the ir bit
panems match . Tbe uriable to which the assignment i ' made i ~ to eq ual I if the numbers match
and 0 otberwise.

4 .57- Develop and veri fy a behavioral mod e l o f the fo ur-bit p riorit y e ncod er described in Pro b­
lem 4.29 .

4 .58 Write a Veril og model o f a circ uit whose J2·bit ou tput is fo rmed by shi ft ing its 32-bit input
three positions to the right and filli ng the vacated posi tions with the bit thai was in the MSB
before the shift occurred (sh ift arith metic right ).

4 .59 Write . Verilog model of a ci rcuit whose 32 -mt out pu t is formed by shiftin g its 32 ·bi t inp ut
three positions to the left and fi lling the vac ated positions with Os(s hift lo!!ical lcftl.

4 .60 Writ e a Veri log mod el o f a BCD -to-d eci mal decoder usi ng the unused co mbinatio ns of the
BCD code as don ' t-ca re co nd itio ns (see Pro blem 4.24) .

4.61 Using the portsy ntax of rhe IEEE 1364 ·200 1 standa rd, writ e and verify a gat e-level mode l of
the 4-bit even parit y c hec ker shown in Fig . 3.36 .

4.62 Using co ntinuo us a.ssignme nt sraremems and the port syntax of the IEEE l3~-200 1 sta ndar d.
write and ve rify lin HDL model o f the 4-bit even pari ty checke r shown in Fig. 3 .36 .
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